Bound Reports 1720

TABLE OF CONTENTS

Executive Summary 1
Introduction 2
Project Location 2
Soils Information 2
Floodplain Information 3
Existing Drainage Patterns 3
Proposed Drainage Patterns and Design 3
Design Criteria 4
Analysis 4
Summary and Results 5
Appendix A - Permit Application
Appendix B - Soils Information
Appendix C - Design Information
Appendix D -Calculations

Table No. Description
Page
\qquad

EXECUTIVE SUMMARY

North Hancock Road is a new urban roadway being constructed from State Road (SR) 50 to County Road (CR) 50 . The overall length of the project is approximately 2.0 miles, and it will be constructed in two phases. Phase 1 A , which extends from station $100+00$ to $117+00$, is currently under review at the St. Johns River Water Management District (Application Number 42-069-1391ANG-ERP); at this time Phase 1 B is proposed which extends from station $117+00$ to station $140+64$. The roadway will consist of a four lane urban typical section with provisions to accommodate a section of the South Lake Rails to Trails Project. As a result of the proposed roadway construction, no wetlands will be impacted and no portion of the roadway will encroach into the 100 -year floodplain.

The new roadway will provide a closed storm sewer drainage system with dry retention ponds for the entire length of this phase of the project. The stormwater runoff from station $117+00$ to $120+98$ will be collected and conveyed to a modified existing Florida Department of Transportation (FDOT) pond that will be expanded with the Phase 1A portion of the project. In addition, the stormwater runoff from station $120+98$ to $140+64$ will be collected and conveyed to an existing depression along the west side of North Hancock Road. The depression will be a shared stormwater facility with Park Square Homes.

Since the project will be permitted through the SJRWMD under 40C-42, treatment volume requirements will be met.

This project meets the requirements set forth by the SJRWMD, Lake County, and the Army Corps of Engineers.

INTRODUCTION

This report provides calculations and documentation to support the drainage design and a Environmental Resource Application (ERP) of Phase 1B of the North Hancock Road project. The proposed roadway is all new construction which will include the following: four 12 foot lanes, a 22 foot raised median, two 4 foot bike lanes, and curb and gutter with a closed storm sewer system. The improvements for Phase 1B of the project will extend from station $117+00$, to station $140+64$ with an overall length of this phase of approximately 0.4 miles. It should be noted that Phase 2 , which extends from $140+64$ to $C R 50$, will be constructed in the future for an additional length of 1.2 miles. The design of Phase 2 will be completed at a later date.

This project meets the requirements set forth by the SJRWMD, Lake County, and the Army Corps of Engineers. The ERP application is included in Appendix A.

The project is located within Sections 21, 22, 27, and 28 Range 26 East, Township 22 South in Lake County, Florida. Figure 1 is a location map that shows the limits of the project. The project area, for Phase 1, within right-of-way, is approximately 5.0 acres. The total project area of Phases 1A, 1B and 2, within right-of-way, is approximately 29.2 acres.

SOILS INFORMATION

The soils within the project limits are identified in the "Soil Survey of Lake County Area, Florida" as Astatula sands. These soils are nearly level to strongly sloping, excessively drained soils. Figure 2 is a copy of a portion of the soil survey which shows the limits of the project. A summary of the soils information was included in the previous permit submittal.

A subsurface exploration was performed by Nodarse \& Associates for the project. The exploration included a series of 18 auger borings along the centerline of the proposed roadway alignment, ranging in depth from 5 to 25 feet; 9 machine auger
borings; and two falling head permeability tests. A copy of the report was included in the previous permit submittal.

FLOODPLAIN INFORMATION

Figure 3 is a copy of a portion of Panel 120421 325B and 375B of the Flood Insurance Rate Map for Lake County, Florida, dated April 1, 1982. As shown in Figure 3, the proposed roadway does not encroach into any areas designated as 100 -year floodplain. Therefore, there will be no impacts to the 100 -year floodplain.

EXISTING DRAINAGE PATTERNS

From station 117+00 to $120+98$ stormwater runoff drains from west to east towards an existing lake, north of SR 50 . In general, from station $120+98$ to station $140+64$ stormwater runoff drains from east to west towards an existing depression, along the west side of North Hancock Road. The existing area which drains to the depression is approximately 38 acres.

PROPOSED DRAINAGE PATTERNS AND DESIGN

Phase 1B is comprised of two basins. Runoff from these basins is collected via curb and gutter and conveyed to either Pond A, which is an existing FDOT pond, or Pond B, which is an existing depression. Since the project will be permitted through the SJRWMD under $40 \mathrm{C}-42$, the treatment volume requirements will be met. The treatment volume will be handled in the dry retention ponds with a 72 hour recovery period.

Basin A runs from SR 50 or station $100+00$ to the entrance of the college or station $120+98$; the portion of the road from $117+00$ to $120+98$ will be constructed at this time. Pond A has been expanded to accommodate all of the stormwater runoff from Basin A. The analysis was included with the previous submittal to the SJRWMD (Application Number 42-069-1391 ANG-ERP).

Basin B extends from station $120+98$ to station $140+74$. The project drainage area of Basin B is approximately 5.0 acres, and the total area that drains to Pond B (existing depression) is approximately 40.2 acres. The required treatment volume for the entire basin is approximately 3.6 acre-ft. The stormwater runoff from Basin B is treated and attenuated in an existing depression just west of North Hancock Road, between stations $130+00$ and $135+00$. It should be noted that approximately 2.2 acres

ANALYSIS
Regulations which govern the stormwater management design for the North Hancock Road project include: CH. 40 C- 42 F.A.C., administered by the SJRWMD; NPDES, an EPA regulation administered jointly by EPA and FDEP; National Flood Insurance Program, administered by FEMA, and Lake County.

A summary of the design criteria for the project is included with the previous permit application.

DESIGN CRITERIA

of additional area will drain to the depression, however the 100 -year flood elevation will still be confined to the depression. Park Square Homes will share the facility with Lake County.

Hydrologic Analysis

The Rational Method was used to compute peak discharges. Times of concentration and runoff volumes were computed utilizing the methodology described in TR-55. Drainage areas were computed from the roadway plans. Runoff coefficients were determined utilizing Table 5-5 from the FDOT Drainage Manual, Volume 2A. Rainfall intensities were estimated from Figure 5-8 of the FDOT Drainage Manual, Volume 1. Copies of these tables and figures are included in Appendix C. Advanced Interconnected Pond Routing was used to develop hydrographs and compute peak stages of the ponds. Hydrologic computations are included in Appendix D.

Hydraulic Analysis

The hydraulic analysis of the storm sewer systems was performed utilizing the hydraulic program, Automated Storm Sewer Analysis and Design (ASAD). The hydraulic analyses are included in Appendix D.

The recovery analysis of Pond B (depression) was performed utilizing the program, PONDS. The analysis was performed by Nodarse \& Associates, Inc. and is included in Appendix B.

SUMMARY AND RESULTS

The storm sewer systems were designed so that the hydraulic grade line from the $10-$ year design storm is at least 1.0 foot below the gutter elevations of North Hancock Road. In addition, inlets were spaced so that the spread along the roadway is a maximum of one-half of the outside lane width. Pond B was analyzed for the 25 year and 100 -year 96 -hour storm events. As shown in Table 1 the peak stages of the pond remain within the existing top of bank. In addition, the treatment volume will recover within 24 hours and the 100-year 10-day runoff volume will recover within 3.5 days.

c
Sections 16,21,22,27,28, Township 22 South, Range 26 East Scale: 1" $=2000^{\prime}$

1980

[^0]Figure 2

Table 1

Summary of Results
Basin B (Pond B)

Storm Event	Peak Stage (feet)	
	Existing	Proposed
25-Year 96 Hour	203.61	203.98
100-Year 96 Hour	207.39	207.84

Storm Event	Peak Inflow (ft ${ }^{3} / \mathbf{s}$)	
	Existing	Proposed
25-Year 96 Hour	58.41	61.55
100-Year 96 Hour	99.05	104.38

Section H

A. General site conditions

1. Recent aerial photo of project site. Figure $H .1$ is an aerial photograph of the project site.
2. Map(s) or applicable construction plan(s) showing:
a. General location of project shown on USGS quad map(s), including points of discharge. Figure 1 of the report is a general location map.
b. Project area boundary. Figure 1 of the report shows the limits of the project.
c. Pre-development (existing) topography. The existing profile of North Hancock Road is included in the attached plans.
d. Pre-development drainage patterns including points of discharge for existing site drainage and drainage basin boundaries. A copy of the predevelopment and offsite drainage map is included in Appendix D.
e. Off-site drainage area and flow patterns across project site. A copy of the pre-development and offsite drainage map is included in Appendix D.
f. Location of existing drainage right-of-way easements on-site. The rights of way for North Hancock Road are shown on the attached plans.
g. Location of private and public water supply wells on-site. There are no private and public water supply wells on-site.
h. All wetlands on the site. There are no wetlands within or adjacent to the project limits.
3. SCS soils map and report and/or soil boring date for treatment facility locations. Figure 2 of the report is a copy of the SCS soils map for the project area. Soils information is included in Appendix B.
4. Water table data
a. Date, location, and water table level of actual measurements (if collected) with estimated depth of antecedent rainfall during the previous one month period. Water table elevations were collected and are included in the Soils Report in the previous permit application. No groundwater was encountered in any of the soil borings.
b. Estimated normal dry and wet season water table elevation. No groundwater was encountered in any of the soil borings. However, estimated wet season water table elevations are estimated to be deeper than 6 feet beneath the existing ground surface.
B. Post-development Project Site Conditions
5. Describe or document the legal outfall for point discharges of treated stormwater to adjacent property. Roadway stormwater runoff will be collected in a closed storm sewer system and conveyed to Pond B (existing depression along North Hancock Road). Since the pond has no outfall, in general stormwater will infiltrate into the ground.
6. Identify and describe all on-site and off-site stormwater management systems which discharge into or receive discharge from the proposed project. Stormwater is conveyed to an existing depression area.
(3) Runoff hydrographs for each drainage basin. Included in Appendix D.
(4) Stage-storage computations. Included in Appendix D.
(5) Stage-discharge computations. Not applicable.
(6) Flood routings through on-site conveyance and storage areas. Included in Appendix D.
(7) Water surface profiles and elevations in the primary surface water management system for the required design storm events. Included in Appendix D.
(8) Runoff peak rates and volumes discharges from the system for the design storm event. Included in Appendix D.
7. Operation and maintenance North Hancock Road will be owned and operated by Lake County. The existing depression is owned and operated by Park Square Homes. Lake County will enter into an agreement with Park Square Homes for the operation and maintenance of the depression area.
8. Alternative stormwater treatment Not applicable
9. Wekiva River Basin Not applicable

March 23, 1999
Project No. W98-G-032
Mr. J. Dwayne Darbonne, P.E.
Vanasse Hangen Brustlin, Inc.
135 West Central Boulevard, Suite 1150
Orlando, Florida 32801
RE: Stormwater Recovery Analysis
Florida Department of Transportation Pond
North Hancock Road Improvements
Lake County, Florida

Dear Mr. Darbonne:
At the request of Mr. Paul Yeargain of your firm, Nodarse \& Associates, Inc. (N\&A) has performed a stormwater recovery analysis on the existing depression designated as Pond 2 for the North Hancock Road Project. We understand the requirements for the pond are as follows:

- Water quality volume of 3.35 acre feet in 72 hours.
- Stormwater runoff volume of 10.35 acre feet in thirty (30) days. Half of this volume must recover in seven (7) days.

Borings in the stormwater pond generally found Stratum 1 soils (A-3) to their boring termination depth of 25 feet below the existing ground surface. The boring locations and profiles are attached. Groundwater was not observed to the termination depth of 25 feet. A laboratory falling head vertical permeability test was performed on a sample obtained from Boring AB-4 at a depth of 5 feet below the existing pond bottom. Laboratory test results found the vertical permeability rate to be approximately 61 feet per day. The effective permeability rate of the soils was reduced to approximately 10 feet per day to account for possible siltation of the pond bottom and long-term densification for infiltrating water. Stormwater recovery analysis was modeled using the computer program PONDS, Version 2.26 using the simplified method. Analyses show the water quality volume being recovered in less than 12 hours with the total runoff volume recovered in less than four (4) days. The calculations are attached.

Licensed Solely For Use By: Nodarse \& Associates, Inc.

Job Information
Job Name: North Hancock Road-Water Quality Volume Engineer: MJH/JWC Date: 3-19-99

Input Data

Equivalent Pond Length, [L] (ft):	261.00
Equivalent Pond Width, [W] (ft):	261.00
Pond Bottom Elevation, [PB] (ft above datum):	188.00
Porosity Of Material Within Pond, [p] (\%):	100.00
Base Of Aquifer Elevation, [B] (ft above datum):	163.00
Water Table Elevation, [WT] (ft above datum):	164.00
Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day)	10.00
Fillable Porosity of Aquifer, [n] (\%):	

Runoff Volume, [V] (cubic feet) 145926.00

Percent Recovery Of Runoff Volume, [PV] (\%) 100.00
I. Results

UNSATURATED FLOW
Not Considered.
SATURATED FLOW
Recovery Time From Saturated F1ow, [T2] (days): 0.4714 Recovered Volume From Saturated Flow, [V2] (ft-3): 145926.00 Maximum Radius Of Influence, [R] (ft): 42.90

Maximum Driving Head, [Hmax] (ft): 26.142

Minimum Driving Head, [Hmin] (ft): 24.000

TOTAL
Total Recovery Time, [T] (days):
Total Recovered Volume, [V] (ft-3):

Written By Devo Seereeram, Ph.D., P.E. And Robert D. Casper

Licensed Solely For Use By: Nodarse \& Associates, Inc.
Job Name: North Hancock Road-Runoff Volume

Engineer: MJH/JWC

Date: 3-19-99
Input Data
Equivalent Pond Length, [L] (ft): 261.00
Equivalent Pond Width, [W] (ft): 261.00
Pond Bottom Elevation, [PB] (ft above datum): 188.00
Porosity Of Material Within Pond, [p] (\%): 100.00
Base Of Aquifer Elevation, [B] (ft above datum): 163.00
Water Table Elevation, [WT] (ft above datum):
Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day) 10.00
Fillable Porosity of Aquifer, [n] (\%): 25.00
Runoff Volume, [V] (cubic feet)
Percent Recovery Of Runoff Volume, [PV] (\%) 100.00
Results
UNSATURATED FLOW
Not Considered.
SATURATED FLOW
Recovery Time From Saturated Flow, [T2] (days):
3.5090
Recovered Volume From Saturated Flow, [V2] (ft-3): 450846.00 Maximum Radius Of Influence, [R] (ft): Maximum Driving Head, [Hmax] (ft): 116.65 Minimum Driving Head, [Hmin] (ft): 30.618 24.000
TOTAL
Total Recovery Time, [T] (days):
3.5090
Total Recovered Volume, [V] (ft-3): 450846.00

Table 5-5
RUNOFF COEFFICIENTS ${ }^{\text {a }}$ FOR A DESIGN STORM RETURN PERIOD OF 10 YEARS OR LESS

Slope	Land Use	Sandy Soils		Clay Soils	
		Min.	Max.	Min.	Max.
Flat$(0-2 \%)$	Woodlands	0.10	0.15	0.15	0.20
	Pasture, grass, and farmland ${ }^{\text {b }}$	0.15	0.20	0.20	0.25
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements ${ }^{\text {c }}$	0.75	0.95	0.90	0.95
	SFR: $\frac{1}{2}$-acre lots and larger	0.30	0.35	0.35	0.45
	Smaller lots	0.35	0.45	0.40	0.50
	Duplexes	0.35	0.45	0.40	0.50
	MFR: Apartments, townhouses, and condominiums	0.45	0.60	0.50	0.70
	Commercial and Industrial	0.50	0.95	0.50	0.95
Rolling$(2-7 \%)$	Woodlands	0.15	0.20	0.20	0.25
	Pasture, grass, and farmland ${ }^{\text {b }}$	0.20	0.25	0.25	0.30
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements ${ }^{\text {c }}$	0.80	0.95	0.90	0.95
	SFR: $\frac{1}{2}$-acre lots and larger	0.35	0.50	0.40	0.55
	Smaller lots	0.40	0.55	0.45	0.60
	Duplexes	0.40	0.55	0.45	0.60
	MFR: Apartments, townhouses,				
	and condominiums	0.50	0.70	0.60	0.80
	Commercial and Industrial	0.50	0.95	0.60	0.95
Steep$(7 \%+)$		0.20	0.25	0.25	0.30
	Pasture, grass, and farmland ${ }^{\text {b }}$	0.25	0.35	0.30	0.40
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements ${ }^{\text {c }}$	0.85	0.95	0.90	0.95
	SFR: $\frac{1}{2}$-acre lots and larger	0.40	0.55	0.50	0.65
	Smaller lots	0.45	0.60	0.55	0.70
	Duplexes	0.45	0.60	0.55	0.70
	MFR: Apartments, townhouses, and condominiums	0.60	0.75	0.65	0.85
	Commercial and Industrial	0.60	0.95	0.65	0.95

[^1]
Table 5-8

SCS RUNOFF CURVE NUMBERS FOR SELECTED AGRICULTURAL, SUBURBAN, AND URBAN LAND USE

Land Use Description	Hydrologic Soil Group			
	A	B	C	D
Cultivated Land ${ }^{\text {a }}$				
Without conservation treatment	72	81	88	91
With conservation treatment	62	71	78	81
Pasture or range land:				
Poor condition	68	79	86	89
Good condition	39	61	74	80
Meadow: good condition	30	58	71	78
Wood or Forest Land:				
Thin stand, poor cover, no mulch	45	66	77	83
	25	55	70	77
Open Spaces, Lawns, Parks, Golf Courses, Cemeteries:				
Good condition: grass cover on 75\% or more of the area	39	61	74	80
Fair condition: grass cover on 50% to 75\% of the area	49	69	79	84
Poor condition: grass cover on 50\% or less of the area	68	79	86	89
Commercial and Business Areas (85\% impervious)	89	92	94	95
Industrial Districts (72\% impervious)	81	88	91	93
Residential ${ }^{\text {C }}$:				
$1 / 8$ acre or less 65	77	85	90	92
$1 / 4$ acre 38	61	75	83	87
$1 / 3$ acre 30	57	72	81	86
$1 / 2$ acre 25	54	70	80	85
1 acre 20	51	68	79	84
Paved Parking Lots, Roofs, Driveways ${ }^{\text {e }}$:	98	98	98	98
Streets and Roads:				
Paved with curbs and storm sewers ${ }^{\text {e }}$	98	98	98	98
Gravel	76	85	89	91
Dirt	72	82	87	89
	83	89	92	93
Newly graded area (no vegetation established) ${ }^{\text {f }}$	77	86	91	94

[^2]Reference: USDA, SCS, TR-55 (1984).
$\begin{array}{lll}\mathbf{1} \\ 1 \\ 1 \\ 1 \\ 1 & \\ \text { Storm Sewer Analysis }\end{array}$

Project N. C tancockRd. Project \#60433
Location \qquad bake co. \qquad
Calculated by \qquad Date
\qquad 49199

Checked by \qquad Date \qquad
Title \qquad Storm Sewer Nodal

CONDITIONS

0000	$0 Z O$	96.0	01	L	$0 L O Z Z$

Automated Storm sewer Analysis \& Design (ASAD), copyright 1992-1997, Hiteshew Engineering Systems, Inc.
Portions of ASAD were developed by Kenneth J. Leeming, P.E. at International Engineering Consultants, Inc.

\section*{| PROJECT | |
| :---: | :---: |
| Number: $\quad 60633$ | |}

4/6/99

FROM Type
8
N

¢
N
j
\mathscr{C}
\mathbf{N}
\dot{j}
N
N
j
N
0
0
0

\circ

1
0
i
i
Units: ENGLISH

Number: 60633	Organization: Vanasse Hangen Brustlin, Inc.
Description:	N. HANCOCK
County: \quad LAKE COUNTY	Designed by: JOK
Checked by: PWY	

\qquad Project \# 60633
\qquad Sheet 1 of 2
Calculated by \qquad Date \qquad Checked by \qquad Date \qquad Title \qquad

1. Compute Treatment Volume

$$
\begin{aligned}
& \text { : Existing Area to depression }=38.1 \mathrm{AC} \\
& \text { - Adelitional oven to depression }=1.75 A C_{C} \quad(A+0 \text { 20u/205 }) \\
& \text { (North (tancoce) } \\
& \text { - Addition Area to clepression }=0.30 \mathrm{Ac} \text { (North of zoulces) } \\
& \text { (North itanceck) } \\
& \text { Total Aryan } 40.15 \mathrm{Ac} \\
& T V_{1}=\left(40.15 A_{c}\right)(\mathrm{lin})\left(\frac{1 f t}{121 \mathrm{n}}\right)=3.35 \mathrm{Ac}_{c}-\mathrm{Ft} \\
& T V_{2}=(4.13 \mathrm{Ac})(1.7 \mathrm{sin})\left(\frac{.74}{121 \mathrm{n}}\right)=0.60 \mathrm{Ac} \text {.ft } \\
& \therefore \text { Use TV }=3.35 \text { Ac- }-5 t
\end{aligned}
$$

Rewseny win 72-hifurs
2. Compute Runoff Volvine 25-96 how r Storm Evert

$$
\begin{aligned}
& P=11.8 \mathrm{in} \\
& A=40.2 \mathrm{AC} \\
& C N=39
\end{aligned}
$$

\qquad Date \qquad
Title \qquad

$$
\begin{aligned}
Q= & \frac{(P-0.2 S)^{2}}{(P+0.8 S)} \\
& S=\frac{1000}{C N}-10 \Rightarrow S=\frac{1000}{39}-10 \Rightarrow S=15.64 \\
Q= & \frac{[11.8-6.2)(15.64)]^{2}}{(11.8+(0.8)(15.64)} \Rightarrow Q=3.09 \mathrm{in} \\
R V= & (3.09 . \operatorname{in})(40.15 \mathrm{Ac})\left(\frac{1+f}{12 \cdot \mathrm{~m}}\right) \\
& R V=10.35 \text { ac. } \mathrm{ft}
\end{aligned}
$$

Runoff Curve Number

Project: \quad North Hancock Rd
Location: Pond B (Depression)
Basin:
Condition:

B
B
Post-development

Computed by: PWY
Date: 3/18/99
Checked:
Date:

Vanasse Hangen Brustlin, Inc.
Reference: SCS TR-55

Stage-Storage-Area Computation

Project:	N. Hancock Rd.	
Basin:	Segment 2 (Pre-development)	
Pond:	N/A	
Computed by:	PWY	Checked by:
Date:	$11 / 3 / 98$	Date:

Elevation (ft)	Area (acres)	Ave Depth (ft)	Incremental Volume (acre-ft)
188.0	0.02	0.00	0.00
190.0	0.13	2.00	0.150
195.0	0.51	5.00	1.600
200.0	0.97	5.00	3.700
205.0	1.56	5.00	6.325
220.0	3.68	15.00	39.300
230.0	5.67	10.00	46.750
235.0	7.88	5.00	33.88
Total		$\mathbf{1 3 1 . 7 0}$	

Runoff Volume
Elevation (@ Runoff Volume)=

Project \qquad N. Hancock ed Project \# 60633 Location Lake ω. Sheet 1 of 1 Calculated by \qquad Pay Date \qquad 419199 Checked by \qquad Date \qquad Title Ad ICPR \qquad

Are- Development

Post-development

Advanced Interconnected Channel \& Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

North Hancock Road
25-year 96-hour
PWY 4-6-98

Basin Name:	EXBASB	BASINB
Group Name:	BASE	BASE
Node Name:	EXPONDB	PONDB
Hydrograph TYpe:	UH	UH
Unit Hydrograph:	UH484	UH484
Peaking Factor:	484.00	484.00
Spec Time Inc (min):	4.60	4.60
Comp Time Inc (min):	4.60	4.60
Rainfall File:	SJRWMD96	SJRwMD96
Rainfall Amount (in):	11.80	11.80
Storm Duration (hr):	96.00	96.00
Status:	$0 N S I T E$	ONSITE
Time of Conc. (min):	34.50	34.50
Lag Time (hr):	0.00	0.00
Area (acres):	38.10	40.15
Vol of Unit Hyd (in):	1.00	1.00
Curve Number:	39.00	39.00
DCIA (\%):	0.00	0.00
Time Max (hrs):	60.18	60.18
Flow Max (cfs):	58.41	61.55
Runoff Volume (in):	3.09	3.09
Runoff Volume (cf):	427143	450126

Advanced Interconnected Channel \& Pond Routing (ICPR Ver 2.11)
Copyright 1995, Streamline Technologies, Inc.

North Hancock Road 100-year 96-hour		
PWY 4-6-98		
********** Basin Summary - 100Y96H		

Basin Name:	EXBASB	BASINB
Group Name:	BASE	BASE
Node Name:	EXPONDB	PONDB
Hydrograph TYpe:	UH	UH
Unit Hydrograph:	UH484	UH484
Peaking Factor:	484.00	484.00
Spec Time Inc (min):	4.60	4.60
Comp Time Inc (min):	4.60	4.60
Rainfall File:	SJRWMD9 6	SJRWMD9 6
Rainfall Amount (in) :	14.90	14.90
Storm Duration (hr) :	96.00	96.00
Status:	ONSITE	ONSITE
Time of conc. (min) :	34.50	34.50
Lag Time (hr) :	0.00	0.00
Area (acres) :	38.10	40.15
Vol of Unit Hyd (in) :	1.00	1.00
Curve Number:	39.00	39.00
DCIA (\%) :	0.00	0.00
Time Max (hrs) :	60.18	60.18
Flow Max (cfs) :	99.05	104.38
Runoff Volume (in):	5.05	5.05
Runoff Volume (cf):	698120	735683

PWY 4-6-98

^(Time units - hours)													
Node Name	Group Name	Max Time Conditions	Max	Stage (ft)	Warning Stage (ft)	Max Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max	$\begin{aligned} & \text { Inflow } \\ & (c f s) \end{aligned}$	Max Time Outflow	Max	Outflow (cfs)
EXPONDB	BASE	96.01		207.39	235.00	0.0489	82694.25	60.00					
GROUND	BASE	0.00		150.00	0.00	0.0000	8269.00	60.00 0.00		77.41 0.00	0.00		0.00
PONDB	BASE	96.01		207.84	235.00	0.0499	85426.29	60.00		81.58	0.00		0.00

100-Year 96-hour
PWY 4-6-98
North Hancock Road

Advanced Interconnected Channe1 \& Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road

U / S Stage (ft)	Discharge (cfs)
188	0
200	0

Advanced Interconnected Channe1 \& Pond Routing (ICPR Ver 2.11) [2] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road

$\mathrm{P}: \backslash 60633 \backslash \mathrm{TECH} \backslash \mathrm{ADICPR} \backslash S I M \backslash B A S I N B \backslash 10 \mathrm{YR} 24 \mathrm{HR}$
Execution: Both
Header: North Hancock Road 10-year 24-hour
PWY 4-6-98

Max Delta $Z(f t): 1$
De1ta Z Factor: 0.05
Time Step Optimizer: 10
Drop Structure Optimizer: 10
Sim Start Time(hrs): 0
Sim End Time(hrs): 30
Min Calc Time (sec): 0.5
Max Calc Time(sec): 30
To Hour: PInc (min): To Hour: PInc (min) :
$10 \quad 60$
$15 \quad 15$
$30 \quad 60$
Override Defaults: Yes
Storm Dur (hrs) : 24
Rain Amount(in): 7.4
Rainfall File: FLMOD

ROUP SELECTIONS

+ BASE [04/06/99]

Advanced Interconnected Channel \& Pond Routing (ICPR Ver 2.11) [3] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road
********** Input Report ***

P: \60633\TECH $\backslash A D I C P R \backslash S I M \backslash 25 Y R 24 H R$
Execution: None
Header: North Hancock Road 25-year 24-hour PWY 4-6-98
Max Delta Z (ft): 1
Delta Z Factor: 0.05
Time Step Optimizer: 10

Override Defaults: Yes Storm Dur(hrs) : 24 Rain Amount (in): 8.6 Rainfall File: FLMOD Drop Structure optimizer: 10

Sim Start Time(hrs): 0
Sim End Time (hrs): 30

Min Calc Time(sec): 0.5
Max Calc Time(sec): 30
To Hour: PInc (min): To Hour: PInc (min):
$10 \quad 60$
$15 \quad 15$
$30 \quad 60$
$30 \quad 30$
---------GROUP SELECTIONS

+ BASE [11/03/98]

P: \60633\TECH \ADICPR\SIM\100YR24H
Execution: None
Header: North Hancock Road 100-year 24-hour PWY 4-6-98

```
DRAULICS-
```

 Max Delta Z (ft): 1
 Delta \(Z\) Factor: 0.05
 Time Step Optimizer: 10
 Drop Structure optimizer: 10
Sim Start Time (hrs): 0
Sim End Time (hrs): 30
Min Calc Time (sec): 0.5
Max Calc Time (sec) : 30
To Hour: PInc (min): To Hour: PInc (min):
$10 \quad 60$
$15 \quad 15$
$30 \quad 60$
Override Defaults: Yes
Storm Dur(hrs): 24
Rain Amount(in): 10.6
Rainfall File: FLMOD

+ BASE [11/03/98]

Advanced Interconnected Channel \& Pond Routing (ICPR Ver 2.11) [4] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road

```
    ********** Input Report
    P:\60633\TECH\ADICPR\SIM\BASINB\25YR96HR
    Execution: Both
    Header: North Hancock Road
            25-year 96-hour
            PWY 4-6-98
---------HYDRAULICS---------------------------------------------------------
        Max Delta Z (ft): 1
            Delta Z Factor: 0.05 Override Defaults: Yes
    Time Step Optimizer: 10
        Storm Dur(hrs): 96
Drop Structure Optimizer: 10
    Sim Start Time(hrs): 0
        Sim End Time(hrs): 100
        Min Calc Time(sec): 0.5
        Max Calc Time(sec): 30
            To Hour: PInc (min): To Hour: PInc(min):
            100 15
                            96 30
                            96 30
---------GROUP SELECTIONS
+ BASE [04/06/99]
            P:\60633\TECH\ADICPR\SIM\BASINB\IOOY96H
    Execution: Both
        Header: North Hancock Road
            100-year 96-hour
            PWY 4-6-98
----------HYDRAULICS--------------------------------------------------------
            Max Delta Z (ft): 1
            Delta Z Factor: 0.05 Override Defaults: Yes
    Time Step Optimizer: 10
Drop Structure Optimizer: 10
    Storm Dur(hrs): 96
    Rain Amount(in):14.9
    Sim Start Time(hrs): 0
        Rainfall File: SJRWMD96
        Sim End Time(hrs): 100
    Min Calc Time(sec): 0.5
    Max Calc Time(sec): 30
        To Hour: PInc(min): To Hour: PInc(min):
        100 30
96
30
----------GROUP SELECTIONS
+ BASE [04/06/99]
```

Basinexbase

[^0]: Soils Map

[^1]: a Weighted coefficient based on percentage of impervious surfaces and green areas must be selected for each site.
 ${ }^{\mathrm{b}}$ Coefficients assume good ground cover and conservation treatment.
 C Depends on depth and degree of permeability of underlying strata.
 Note: $\quad S F R=$ Single Family Residential
 MFR $=$ Multi-Family Residential

[^2]: ${ }^{\text {a }}$ For a more detailed description of agricultural land use curve numbers, refer to Table 5-9.
 $\mathrm{b}_{\text {Good cover }}$ is protected from grazing and litter and brush cover soil.
 ${ }^{\text {C }}$ Curve numbers are computed assuming the runoff from the house and driveway is directed toward the street with a minimum of roof water directed to lawns where additional infiltration could occur.
 $d_{\text {The }}$ remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.
 ${ }^{\text {e }}$ In some warmer climates of the country, a curve number of 96 may be used.
 $\mathrm{f}_{\text {Use }}$ for temporary conditions during grading and construction.
 Note: These values are for Antecedent Moisture Condition II, and $I_{a}=0.2 S$.

