50126-2

Bound Reports 1720

Drainage Computations and Permit Application

NORTH HANCOCK ROAD (PHASE 1B)

LAKE COUNTY, FLORIDA

Prepared For:

Lake County Public Works Department

50126-2

NDO

SJR

123 N. Sinclair Avenue

Tavares, Florida 32778

Prepared By:

VANASSE HANGEN BRUSTLIN, INC.

135 W. Central Boulevard, Suite 1150

Orlando, Florida 32801

April 12, 1999

F1-Orla\projects\60633\wp\reports\Drainage Cover.doc

-	
VHB	

Vanasse Hangen Brustlin, Inc.

TABLE OF CONTENTS

Executive Summary1
Introduction2
Project Location2
Soils Information2
Floodplain Information
Existing Drainage Patterns
Proposed Drainage Patterns and Design3
Design Criteria4
Analysis4
Summary and Results5

Appendix A – Permit Application

Appendix B - Soils Information

Appendix C - Design Information

Appendix D - Calculations

Van W. Yceny -4-12-95

FI-orta\projects\60633\wp\reports\drainage report.doc

. انگ

-

. Internet

iw.

. Lines

iteres (

. Ijen

-

. And

ýna mar

-

. Aligna

ijinij

Vanasse Hangen Brustlin, Inc.

Figures

Figure No.	Description	Page
1	Logation Man	6
1	Location Map	
2	Soils Map	7
3	Floodplain Map	8

Fi-orla\projects\60633\wp\reports\drainage report.doc

ii

-

, paras Second

ø

. Send Name

(me

-

. . .

(114)

.

Tables

Table No.	Description	Page
1	Summary of Peak Stages	9

. Jacob

ļim.

EXECUTIVE SUMMARY

North Hancock Road is a new urban roadway being constructed from State Road (SR) 50 to County Road (CR) 50. The overall length of the project is approximately 2.0 miles, and it will be constructed in two phases. Phase 1A, which extends from station 100+00 to 117+00, is currently under review at the St. Johns River Water Management District (Application Number 42-069-1391ANG-ERP); at this time Phase 1B is proposed which extends from station 117+00 to station 140+64. The roadway will consist of a four lane urban typical section with provisions to accommodate a section of the South Lake Rails to Trails Project. As a result of the proposed roadway construction, no wetlands will be impacted and no portion of the roadway will encroach into the 100-year floodplain.

The new roadway will provide a closed storm sewer drainage system with dry retention ponds for the entire length of this phase of the project. The stormwater runoff from station 117+00 to 120+98 will be collected and conveyed to a modified existing Florida Department of Transportation (FDOT) pond that will be expanded with the Phase 1A portion of the project. In addition, the stormwater runoff from station 120+98 to 140+64 will be collected and conveyed to an existing depression along the west side of North Hancock Road. The depression will be a shared stormwater facility with Park Square Homes.

Since the project will be permitted through the SJRWMD under 40C-42, treatment volume requirements will be met.

This project meets the requirements set forth by the SJRWMD, Lake County, and the Army Corps of Engineers.

INTRODUCTION

This report provides calculations and documentation to support the drainage design and a Environmental Resource Application (ERP) of Phase 1B of the North Hancock Road project. The proposed roadway is all new construction which will include the following: four 12 foot lanes, a 22 foot raised median, two 4 foot bike lanes, and curb and gutter with a closed storm sewer system. The improvements for Phase 1B of the project will extend from station 117+00, to station 140+64 with an overall length of this phase of approximately 0.4 miles. It should be noted that Phase 2, which extends from 140+64 to CR 50, will be constructed in the future for an additional length of 1.2 miles. The design of Phase 2 will be completed at a later date.

This project meets the requirements set forth by the SJRWMD, Lake County, and the Army Corps of Engineers. The ERP application is included in Appendix A.

PROJECT LOCATION

The project is located within Sections 21, 22, 27, and 28 Range 26 East, Township 22 South in Lake County, Florida. Figure 1 is a location map that shows the limits of the project. The project area, for Phase 1, within right-of-way, is approximately 5.0 acres. The total project area of Phases 1A, 1B and 2, within right-of-way, is approximately 29.2 acres.

SOILS INFORMATION

The soils within the project limits are identified in the "Soil Survey of Lake County Area, Florida" as Astatula sands. These soils are nearly level to strongly sloping, excessively drained soils. Figure 2 is a copy of a portion of the soil survey which shows the limits of the project. A summary of the soils information was included in the previous permit submittal.

A subsurface exploration was performed by Nodarse & Associates for the project. The exploration included a series of 18 auger borings along the centerline of the proposed roadway alignment, ranging in depth from 5 to 25 feet; 9 machine auger borings; and two falling head permeability tests. A copy of the report was included in the previous permit submittal.

FLOODPLAIN INFORMATION

Figure 3 is a copy of a portion of Panel 120421 325B and 375B of the Flood Insurance Rate Map for Lake County, Florida, dated April 1, 1982. As shown in Figure 3, the proposed roadway does not encroach into any areas designated as 100-year floodplain. Therefore, there will be no impacts to the 100-year floodplain.

EXISTING DRAINAGE PATTERNS

From station 117+00 to 120+98 stormwater runoff drains from west to east towards an existing lake, north of SR 50. In general, from station 120+98 to station 140+64 stormwater runoff drains from east to west towards an existing depression, along the west side of North Hancock Road. The existing area which drains to the depression is approximately 38 acres.

PROPOSED DRAINAGE PATTERNS AND DESIGN

Phase 1B is comprised of two basins. Runoff from these basins is collected via curb and gutter and conveyed to either Pond A, which is an existing FDOT pond, or Pond B, which is an existing depression. Since the project will be permitted through the SJRWMD under 40C-42, the treatment volume requirements will be met. The treatment volume will be handled in the dry retention ponds with a 72 hour recovery period.

Basin A runs from SR 50 or station 100+00 to the entrance of the college or station 120+98; the portion of the road from 117+00 to 120+98 will be constructed at this time. Pond A has been expanded to accommodate all of the stormwater runoff from Basin A. The analysis was included with the previous submittal to the SJRWMD (Application Number 42-069-1391 ANG-ERP).

Basin B extends from station 120+98 to station 140+74. The project drainage area of Basin B is approximately 5.0 acres, and the total area that drains to Pond B (existing depression) is approximately 40.2 acres. The required treatment volume for the entire basin is approximately 3.6 acre-ft. The stormwater runoff from Basin B is treated and attenuated in an existing depression just west of North Hancock Road, between stations 130+00 and 135+00. It should be noted that approximately 2.2 acres

Vanasse Hangen Brustlin, Inc.

of additional area will drain to the depression, however the 100-year flood elevation will still be confined to the depression. Park Square Homes will share the facility with Lake County.

DESIGN CRITERIA

Regulations which govern the stormwater management design for the North Hancock Road project include: CH. 40C-42 <u>F.A.C.</u>, administered by the SJRWMD; NPDES, an EPA regulation administered jointly by EPA and FDEP; National Flood Insurance Program, administered by FEMA, and Lake County.

A summary of the design criteria for the project is included with the previous permit application.

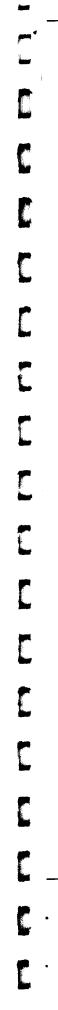
ANALYSIS

Hydrologic Analysis

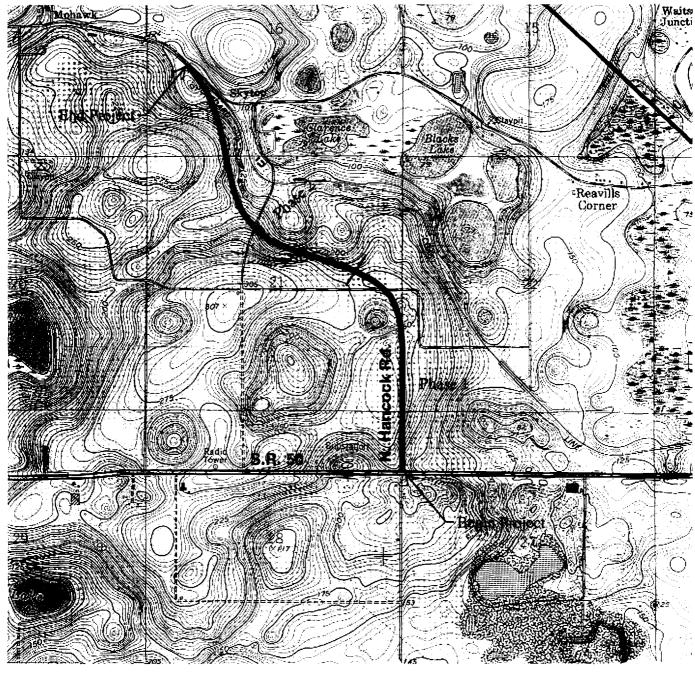
The Rational Method was used to compute peak discharges. Times of concentration and runoff volumes were computed utilizing the methodology described in TR-55. Drainage areas were computed from the roadway plans. Runoff coefficients were determined utilizing Table 5-5 from the FDOT Drainage Manual, Volume 2A. Rainfall intensities were estimated from Figure 5-8 of the FDOT Drainage Manual, Volume 1. Copies of these tables and figures are included in Appendix C. Advanced Interconnected Pond Routing was used to develop hydrographs and compute peak stages of the ponds. Hydrologic computations are included in Appendix D.

Hydraulic Analysis

The hydraulic analysis of the storm sewer systems was performed utilizing the hydraulic program, Automated Storm Sewer Analysis and Design (ASAD). The hydraulic analyses are included in Appendix D.



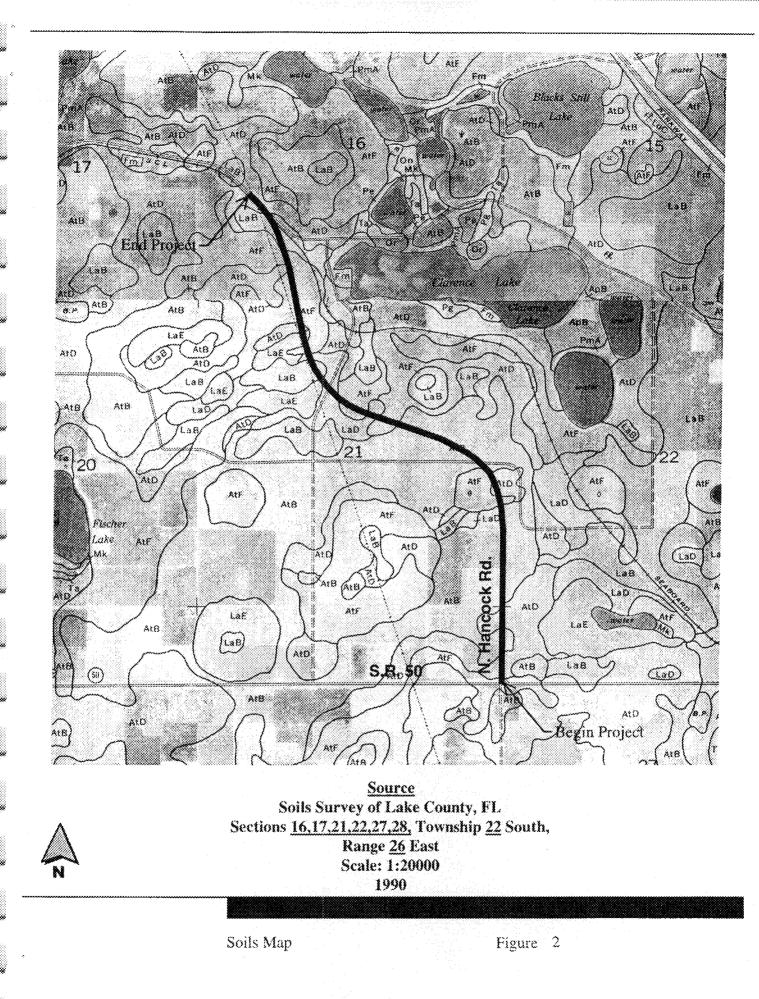
Pond Recovery Analysis


The recovery analysis of Pond B (depression) was performed utilizing the program, PONDS. The analysis was performed by Nodarse & Associates, Inc. and is included in Appendix B.

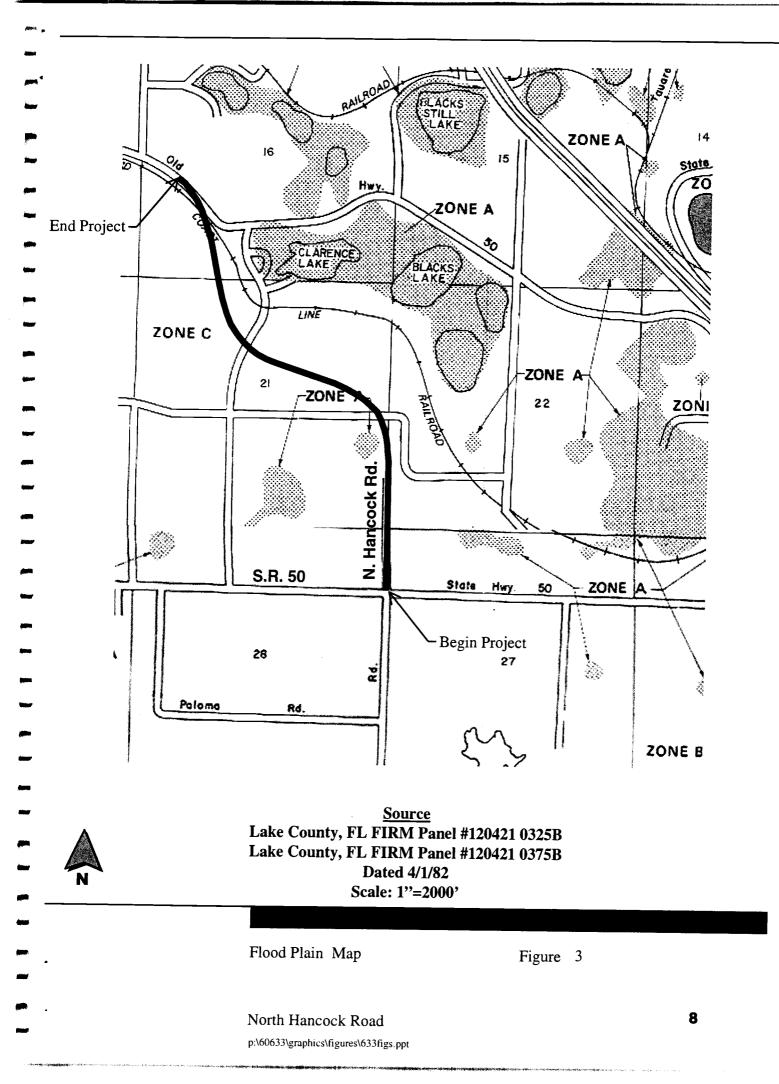
SUMMARY AND RESULTS

The storm sewer systems were designed so that the hydraulic grade line from the 10year design storm is at least 1.0 foot below the gutter elevations of North Hancock Road. In addition, inlets were spaced so that the spread along the roadway is a maximum of one-half of the outside lane width. Pond B was analyzed for the 25year and 100-year 96-hour storm events. As shown in Table 1 the peak stages of the pond remain within the existing top of bank. In addition, the treatment volume will recover within 24 hours and the 100-year 10-day runoff volume will recover within 3.5 days.

Ν


Source USGS Quadrangle Map Clermont East, Florida Sections <u>16,21,22,27,28</u>, Township <u>22</u> South, Range <u>26</u> East Scale: 1" = 2000' 1980

Vanasse Hangen Brustlin, Inc.


Drainage Area / Location Map Figure 1

North Hancock Road

6

North Hancock Road p%606.33\graphics\figures\633figs.ppt

Table 1

romen ge

Films

(1111)

İlines'

-

ing i

-

....

-

Summary of Results Basin B (Pond B)

Storm Event	Peak Stage (feet)					
	Existing	Proposed				
25-Year 96 Hour	203.61	203.98				
100-Year 96 Hour	207.39	207.84				

Storm Event	Peak Inflow (ft ³ /s)						
	Existing	Proposed					
25-Year 96 Hour 100-Year 96 Hour		61.55 104.38					

9

Section H

A. General site conditions

- 1. Recent aerial photo of project site. Figure H.1 is an aerial photograph of the project site.
- 2. Map(s) or applicable construction plan(s) showing:
 - a. General location of project shown on USGS quad map(s), including points of discharge. Figure 1 of the report is a general location map.
 - b. Project area boundary. Figure 1 of the report shows the limits of the project.
 - c. Pre-development (existing) topography. *The existing profile of North Hancock Road is included in the attached plans.*
 - d. Pre-development drainage patterns including points of discharge for existing site drainage and drainage basin boundaries. *A copy of the pre-development and offsite drainage map is included in Appendix D.*
 - e. Off-site drainage area and flow patterns across project site. A copy of the pre-development and offsite drainage map is included in Appendix D.
 - f. Location of existing drainage right-of-way easements on-site. The rights of way for North Hancock Road are shown on the attached plans.
 - g. Location of private and public water supply wells on-site. There are no private and public water supply wells on-site.
 - h. All wetlands on the site. There are no wetlands within or adjacent to the project limits.
- 3. SCS soils map and report and/or soil boring date for treatment facility locations. Figure 2 of the report is a copy of the SCS soils map for the project area. Soils information is included in Appendix B.
- 4. Water table data
 - a. Date, location, and water table level of actual measurements (if collected) with estimated depth of antecedent rainfall during the previous one month period. Water table elevations were collected and are included in the Soils Report in the previous permit application. No groundwater was encountered in any of the soil borings.
 - b. Estimated normal dry and wet season water table elevation. No groundwater was encountered in any of the soil borings. However, estimated wet season water table elevations are estimated to be deeper than 6 feet beneath the existing ground surface.
- B. Post-development Project Site Conditions
 - 1. Describe or document the legal outfall for point discharges of treated stormwater to adjacent property. *Roadway stormwater runoff will be collected in a closed storm sewer system and conveyed to Pond B (existing depression along North Hancock Road). Since the pond has no outfall, in general stormwater will infiltrate into the ground.*
 - 2. Identify and describe all on-site and off-site stormwater management systems which discharge into or receive discharge from the proposed project. *Stormwater is conveyed to an existing depression area.*

Vanasse Hangen Brustlin, Inc.

- 3. Provide the design tailwater elevation at all points of discharge. *Not applicable* (*discharge is through infiltration*).
- 4. Include the following on construction drawings for the project site:
 - a. Project land use and land cover.
 - b. Proposed construction, including erosion and sediment control plan for each phase. *Please see the attached construction plans. Please note this is a phased construction project.*
 - c. Vegetative cover plan for all on-site and off-site earth surfaces disturbed by construction. All disturbed surfaces will either be sodded or seeded and mulched. Please see the attached construction plans.
 - d. Legal reservations for access to the treatment system for maintenance and operation by future maintenance entities for subdivided projects. Stormwater treatment will be provided in modified existing depression area. The right-of-way of the pond is owned by Park Square. Lake County is entering an agreement with Park Square Homes for operation and maintenance.
 - e. Provide locations for the following on construction plans:
 - (1) Drainage divide and area served by each hydraulically separate stormwater treatment system. A drainage map for the project is included in the attached report.
 - (2) Septic tank or other proposed on-site wastewater treatment facility. *Not applicable.*
 - (3) Wells and surface water withdrawals. Not applicable.
 - f. Provide plans, elevations and/or profiles, and details for the following:
 - (1) Roadway and parking pavements. *Please see the attached construction plans.*
 - (2) Floor slabs, walkways and other paved surfaces. All proposed sidewalks are shown on the attached construction plans.
 - (3) Earthwork grades for pervious landscaped areas. *Please see the attached construction plans*.
 - (4) All stormwater treatment and drainage facilities. *Please see the attached construction plans.*
 - (5) Show the following details for stormwater treatment systems construction plans.
 - a) All treatment systems:
 - (1) Show the elevations of normal wet season water table, design normal water elevation, and elevations for storage of the treatment volume. Stormwater treatment will be provided in Pond B (existing depression area). According to the geotechnical report, included in Appendix A, the seasonal high water table is at least 6 feet below the existing ground surface. No groundwater was encountered in the soil borings.
 - (2) Details of oil and grease control mechanism, if required. *Not applicable*.
 - (3) Details of the outlet and overflow control structure. *Not applicable. In general discharge is through groundwater infiltration.*

- (4) Details of treatment drawdown outlets. Show the design tailwater elevations on the outlet details. *Not applicable.*
- (5) The minimum erosion and sediment control measures to be implemented during construction and all permanent control measures in post-development conditions. *Please see the attached construction plans.*
- b) Retention/detention facilities:
 - Plan contours and/or cross section details showing bottom contours and elevations, all design dimensions, side slopes, and top of bank elevations. *Please see the attached construction plans*.
 - (2) Grassing or planting of all treatment system earth surfaces. *Please see the attached construction plans.*
- c) Exfiltration trench. Not applicable.
- d) Underdrain and filter systems. Not applicable.
- e) Wet detention systems. Not applicable.
- f) Wetland stormwater management systems. Not applicable.
- g) Karst Sensitive Areas. Not applicable.
- 6. Design analysis/calculations
 - a. Provide the rational method runoff coefficient, drainage area, and impervious area for each treatment system. *The runoff coefficient, drainage area, and impervious area calculations are included in Appendix D.*
 - b. Calculate treatment volume required for each separate system. *Treatment* volume calculations are included in Appendix D.
 - c. Provide stage-storage tabulations... Included in Appendix D.
 - d. Demonstrate 72-hour drawdown... Included in Appendix D.
 - e. Demonstrate that the function of the proposed treatment systems does not aversely affect the treatment performance of all other stormwater management systems which serve or are served by the proposed project. *Not applicable.*
 - f. Demonstrate no more than half the treatment volume is discharge within 48 to 60 hours... *Not applicable.*
 - g. Design analysis for sizing wet detention permanent pool volume. *Not applicable*.
 - h. Describe any additional management practices such as pretreatment, which will be used to enhance the water quality of the stormwater discharge. *Not applicable.*
 - i. Peak discharge and conveyance calculations for pre-development and post-development conditions as follows:
 - Runoff characteristics, including area, runoff curve number or runoff coefficient, SCS hydrologic soil group, and time of concentration for each drainage hydrologic unit. *Runoff coefficients and times of concentrations are included in Appendix D.*
 - (2) Design storms used including duration, frequency, and time distribution. *Included in Appendix D*.

fa -up

- (3) Runoff hydrographs for each drainage basin. Included in Appendix D.
- (4) Stage-storage computations. Included in Appendix D.
- (5) Stage-discharge computations. Not applicable.
- (6) Flood routings through on-site conveyance and storage areas. *Included in Appendix D.*
- (7) Water surface profiles and elevations in the primary surface water management system for the required design storm events. *Included in Appendix D.*
- (8) Runoff peak rates and volumes discharges from the system for the design storm event. *Included in Appendix D*.
- 7. **Operation and maintenance** North Hancock Road will be owned and operated by Lake County. The existing depression is owned and operated by Park Square Homes. Lake County will enter into an agreement with Park Square Homes for the operation and maintenance of the depression area.
- 8. Alternative stormwater treatment Not applicable
- 9. Wekiva River Basin Not applicable

Geotechnical, Environmental Geotechnics & Materials Engineering

March 23, 1999 Project No. W98-G-032

Mr. J. Dwayne Darbonne, P.E. Vanasse Hangen Brustlin, Inc. 135 West Central Boulevard, Suite 1150 Orlando, Florida 32801

RE: Stormwater Recovery Analysis Florida Department of Transportation Pond North Hancock Road Improvements Lake County, Florida

Dear Mr. Darbonne:

At the request of Mr. Paul Yeargain of your firm, Nodarse & Associates, Inc. (N&A) has performed a stormwater recovery analysis on the existing depression designated as Pond 2 for the North Hancock Road Project. We understand the requirements for the pond are as follows:

- Water quality volume of 3.35 acre feet in 72 hours.
- Stormwater runoff volume of 10.35 acre feet in thirty (30) days. Half of this volume must recover in seven (7) days.

Borings in the stormwater pond generally found Stratum 1 soils (A-3) to their boring termination depth of 25 feet below the existing ground surface. The boring locations and profiles are attached. Groundwater was not observed to the termination depth of 25 feet. A laboratory falling head vertical permeability test was performed on a sample obtained from Boring AB-4 at a depth of 5 feet below the existing pond bottom. Laboratory test results found the vertical permeability rate to be approximately 61 feet per day. The effective permeability rate of the soils was reduced to approximately 10 feet per day to account for possible siltation of the pond bottom and long-term densification for infiltrating water. Stormwater recovery analysis was modeled using the computer program PONDS, Version 2.26 using the simplified method. Analyses show the water quality volume being recovered in less than 12 hours with the total runoff volume recovered in less than four (4) days. The calculations are attached.

BUILD ON OUR EXPERIENCE 1030 NORTH ORLANDO AVENUE, SUITE A • WINTER PARK, FLORIDA 32789 • 407.740.6110 • FAX 407.740.6112 • e-mail: nodarse@nodarse.com

LEILA NODARSE, P.E. President

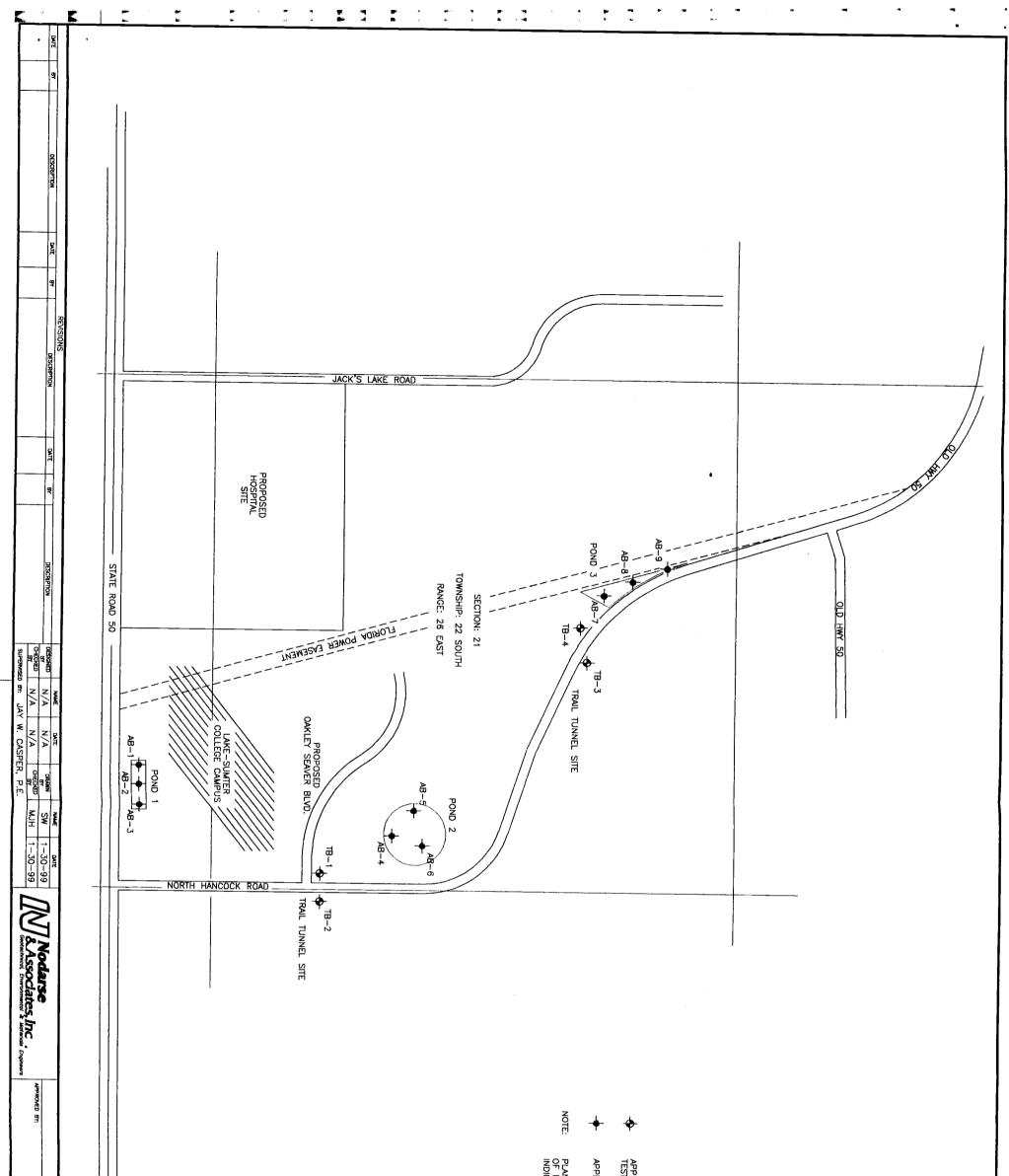
MICHAEL PREIM, P.E. Senior Vice President

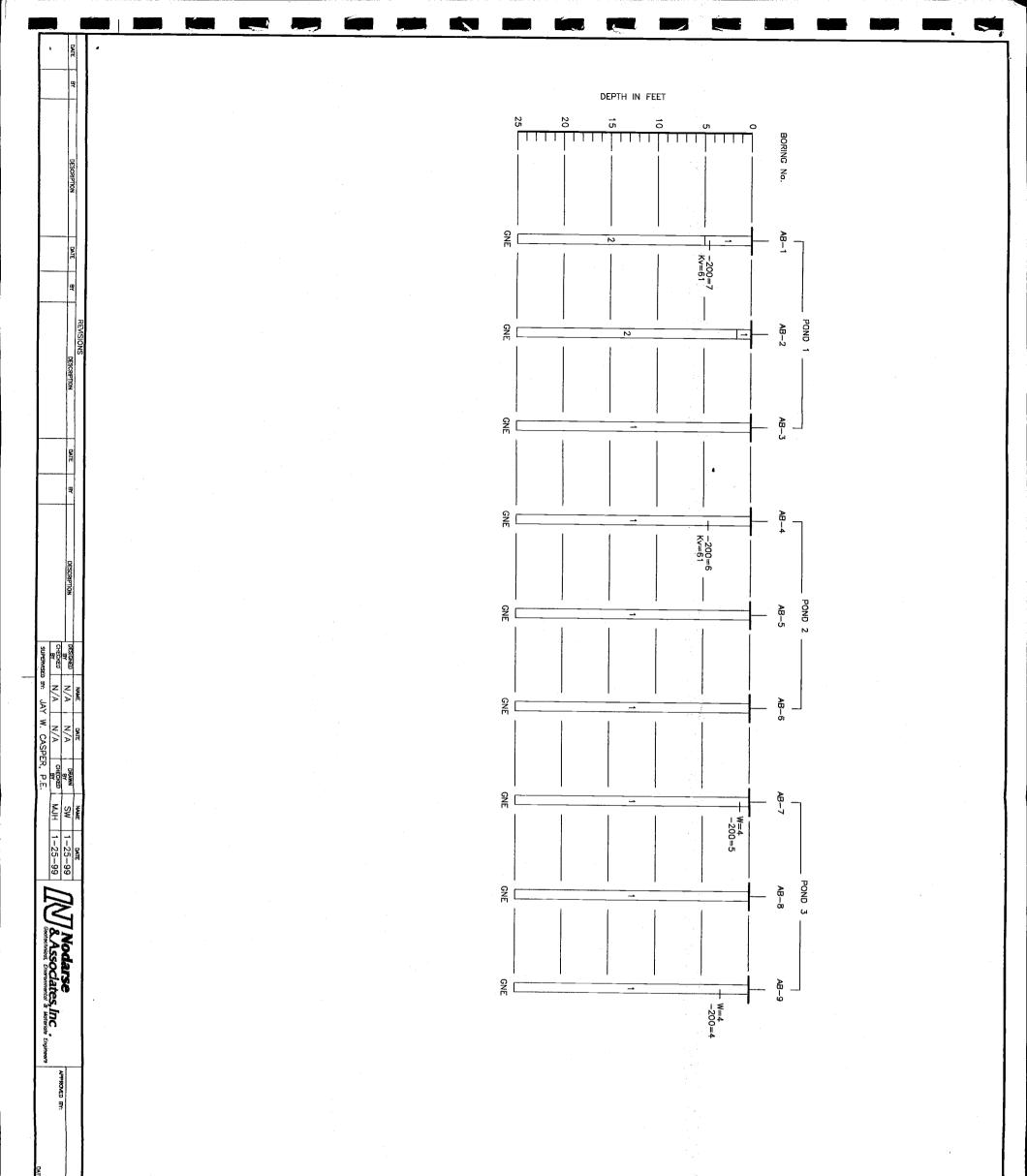
DANIEL DUNHAM, P.E. LAUREL HALL, P.E. SYLVIA JAMMAL DANIEL STANFILL, P.E. DAVID TWEDELL SANDRA WINKLER Vice Presidents Vanasse Hangen Brustlin, Inc. Project No. W98-G-032 Page 2

Should you have any questions, or if we can be of any further service to you, please do not hesitate to contact us.

Sincerely,

- put L 7---3-23-99


Michael J. Horst, P.E. Project Engineer FL Registration No. 52668


W98-032.LET:MJH3-99/sc

Attachments: Figures 2 and 5 Calculations

3/23/99 Jay W. Casper, P/E.

Manager, Geotechnical Services FL Registration No. 36330

ā (Kv	-200	×	GNE	(A-3)	3	2					
GEOTECHNICAL ENGINEERING EV NORTH HANCOCK ROAD LAKE COUNTY, FLORIDA	OND BORINGS	APPROVED BY: JAY W. CA P.E. NO.: 36330					COEFFICIENT OF VERTICAL PERN	FINES PASSING No.	NATURAL MOISTURE CONTENT (%)	GROUNDWATER NOT ENCOUNTERED TO DEPTH) AAS.H.T.O. SOIL CLASSIFICATION GROUP SYMBOL AS DETERMINED BY VISUAL EXAMINATION	RED-ORANGE SILTY FINE SAND, TRACE CLAY $(A-2-4)$	orange-brown to orange slightly silty to silty fine sand $(A-2-4)$	ORANCE-BROWN TO BROWN FINE SAND TO SLIGHTLY SILTY FINE SAND (A-3)	LEGEND		FLA.	DIV. NO. STATE
EVALUATION)AD		W. CASPER 36330 DATE:					day)				BOL							PROJECT NO.
		I			•													YEAR
			<u> </u>	 		 												S∰ S∰

NODARSE and ASSOC. No. W98G-032

FIGURE: 5

PONDS - Version 2.26 Copyright 1993 Written By Devo Seereeram, Ph.D., P.E. And Robert D. Casper Licensed Solely For Use By: Nodarse & Associates, Inc. Retention Pond Recovery Analysis Job Information Job Name: North Hancock Road-Water Quality Volume 3-19-99

Engineer: MJH/JWC Date:

Input Data

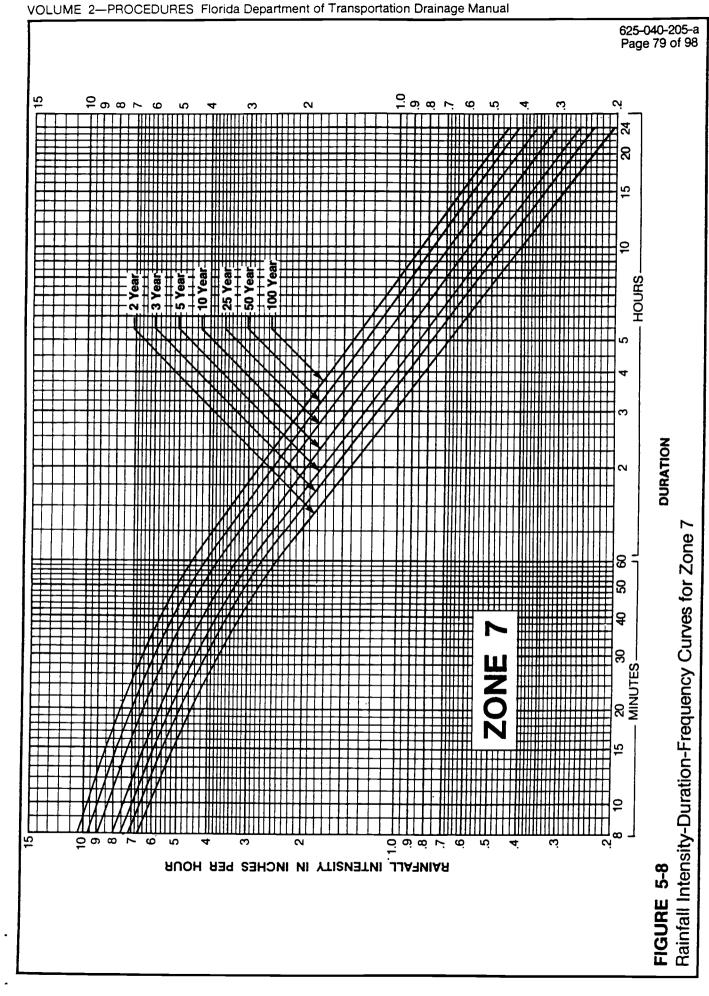
Equivalent Pond Length, [L] (ft): 261.00 Equivalent Pond Width, [W] (ft): Pond Bottom Elevation, [PB] (ft above datum): 261.00 188.00 Porosity Of Material Within Pond, [p] (%): 100.00 Base Of Aquifer Elevation, [B] (ft above datum): Water Table Elevation, [WT] (ft above datum): 163.00 164.00 Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day) 10.00 Fillable Porosity of Aquifer, [n] (%): 25.00

Runoff Volume, [V] (cubic feet) 145926.00 Percent Recovery Of Runoff Volume, [PV] (%) 100.00

I. Results

UNSATURATED FLOW

Not Considered.


SATURATED FLOW

Recovery Time From Saturated Flow, [T2] (days): 0.4714 Recovered Volume From Saturated Flow, [V2] (ft^3): 145926.00 Maximum Radius Of Influence, [R] (ft): Maximum Driving Head, [Hmax] (ft): Minimum Driving Head, [Hmin] (ft): 42.90 26.142 24.000

TOTAL

Total Recovery Time, [T] (days): 0.4714 Total Recovered Volume, [V] (ft³): 145926.00

PONDS - Version 2.26 Copyright 1993 Written By Devo Seereeram, Ph.D., P.E. And Robert D. Casper Licensed Solely For Use By: Nodarse & Associates, Inc. Retention Pond Recovery Analysis Job Information Job Name: North Hancock Road-Runoff Volume Engineer: MJH/JWC 3-19-99 Date: II. Input Data Equivalent Pond Length, [L] (ft): 261.00 Equivalent Pond Width, [W] (ft): Pond Bottom Elevation, [PB] (ft above datum): 261.00 188.00 Porosity Of Material Within Pond, [p] (%): 100.00 Base Of Aquifer Elevation, [B] (ft above datum): Water Table Elevation, [WT] (ft above datum): 163.00 164.00 Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day) Fillable Porosity of Aquifer, [n] (%): 10.00 25.00 Runoff Volume, [V] (cubic feet) 450846.00 Percent Recovery Of Runoff Volume, [PV] (%) 100.00 Results UNSATURATED FLOW Not Considered. SATURATED FLOW Recovery Time From Saturated Flow, [T2] (days): 3.5090 Recovered Volume From Saturated Flow, [12] (days): 5.5090 450846.00 Maximum Radius Of Influence, [R] (ft): Maximum Driving Head, [Hmax] (ft): Minimum Driving Head, [Hmin] (ft): 116.65 30.618 24.000 TOTAL Total Recovery Time, [T] (days): 3.5090 Total Recovered Volume, [V] (ft³): 450846.00

625-040-205-a Page 50 of 98

Table 5-5 RUNOFF COEFFICIENTS FOR A DESIGN STORM RETURN PERIOD OF 10 YEARS OR LESS

		Sandy	Soils	Clay	Soils
Slope	Land Use	Min.	Max.	Min.	Max.
Flat	Woodlands	0.10	0.15	0.15	0.20
(0-2%)	Pasture, grass, and farmland ^b	0.15	0.20	0.20	0.25
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements	0.75	0.95	0.90	0.95
	SFR: ¹ -acre lots and larger	0.30	0.35	0.35	0.45
	Smaller lots	0.35	0.45	0.40	0.50
	Duplexes	0.35	0.45	0.40	0.50
	MFR: Apartments, townhouses,				
	and condominiums	0.45	0.60	0.50	0.70
	Commercial and Industrial	0.50	0.95	0.50	0.95
Rolling	Woodlands	0.15	0.20	0.20	0.25
(2-7%)	Pasture, grass, and farmland ^D	0.20	0.25	0.25	0.30
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements ^C	0.80	0.95	0.90	0.95
	SFR: ¹ 2-acre lots and larger	0.35	0.50	0.40	0.55
	Smaller lots	0.40	0.55	0.45	0.60
	Duplexes	0.40	0.55	0.45	0.60
	MFR: Apartments, townhouses,				
	and condominiums	0.50	0.70	0.60	0.80
	Commercial and Industrial	0.50	0.95	0.60	0.95
Steep	Woodlands	0.20	0.25	0.25	0.30
(78+)	Pasture, grass, and farmland D	0.25	0.35	0.30	0.40
	Rooftops and pavement	0.95	0.95	0.95	0.95
	Pervious pavements	0.85	0.95	0.90	0.95
	SFR: ¹ 2-acre lots and larger	0.40	0.55	0.50	0.65
	Smaller lots	0.45	0.60	0.55	0.70
	Duplexes	0.45	0.60	0.55	0.70
	MFR: Apartments, townhouses,				
	and condominiums	0.60	0.75	0.65	0.85
	Commercial and Industrial	0.60	0.95	0.65	0.95

^aWeighted coefficient based on percentage of impervious surfaces and green areas must be selected for each site.

^bCoefficients assume good ground cover and conservation treatment.

^CDepends on depth and degree of permeability of underlying strata.

Note: SFR = Single Family Residential MFR = Multi-Family Residential ·-- •

Table 5-8

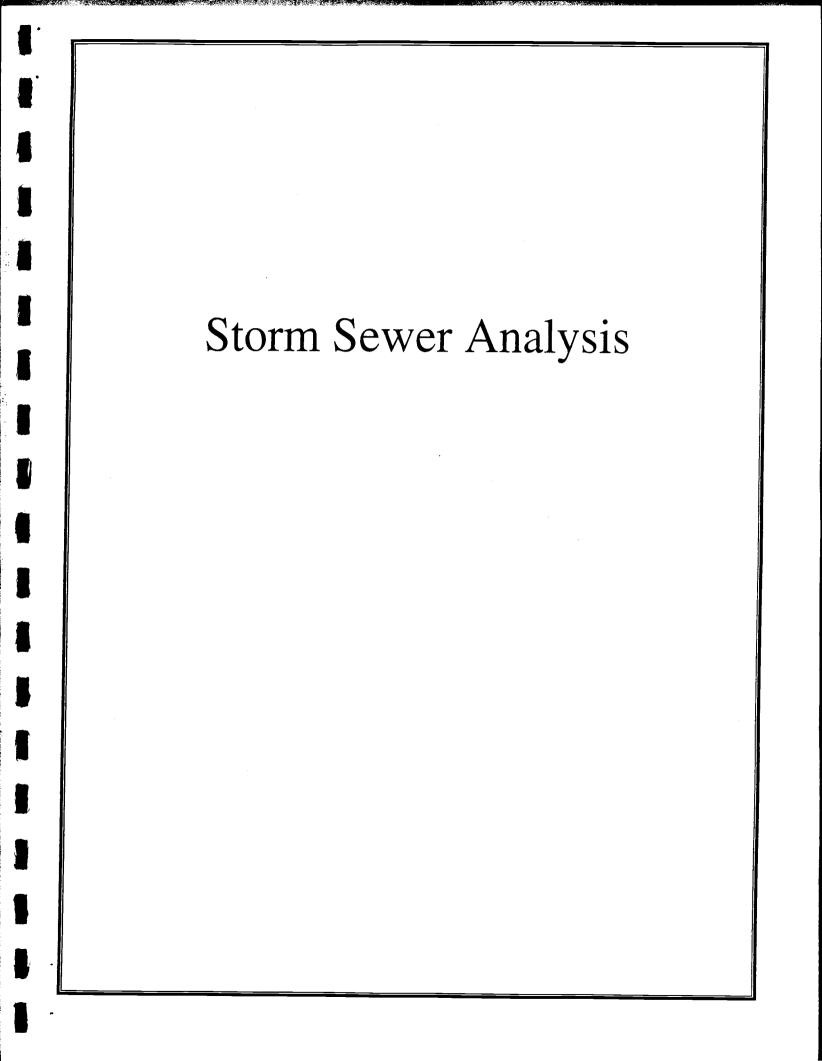
SCS RUNOFF CURVE NUMBERS FOR SELECTED AGRICULTURAL, SUBURBAN, AND URBAN LAND USE

	Ну	drologic	Soil Gr	oup
Land Use Description	<u>A</u>	B	<u>c</u>	D
Cultivated Land ^a :				
Without conservation treatment	72	81	88	91
With conservation treatment	62	71	78	81
Pacture or range land.				
Pasture or range land: Poor condition	68	79	86	
Good condition	39	79 61	74	89 80
			/4	00
Meadow: good condition	30	58	71	78
Wood or Forest Land:				
Thin stand, poor cover, no mulch	45	66	77	83
Good cover ^D	25	55	70	77
Open Spaces, Lawns, Parks, Golf Courses, Cemeteries:		_		
Good condition: grass cover on 75% or more of the area Fair condition: grass cover on 50% to 75% of the area	39	61	74	80
Poor condition: grass cover on 50% or less of the area	49 68	69 79	79 86	84 89
	00	/9	00	69
Commercial and Business Areas (85% impervious)	89	92	94	95
Industrial Districts (72% impervious)	81	88	91	93
Residential ^C :				
Average lot size Average % Impervious ^d				
1/8 acre or less 65	77	85	90	92
1/4 acre 38	61	75	83	87
1/3 acre 30	57	72	81	86
1/2 acre 25 1 acre 20	54	70	80	85
	51	68	7 9	84
Paved Parking Lots, Roofs, Driveways ^e :	98	98	98	98
Streets and Roads:				
Paved with curbs and storm sewers ^e	98	98	98	98
Gravel	76	85	89	98 91
Dirt	72	82	87	89
Paved with open ditches	83	89	92	93
Newly graded area (no vegetation established) [‡]	77	86	91	94

^aFor a more detailed description of agricultural land use curve numbers, refer to Table 5-9.

^bGood cover is protected from grazing and litter and brush cover soil.

^CCurve numbers are computed assuming the runoff from the house and driveway is directed toward the street with a minimum of roof water directed to lawns where additional infiltration could occur.

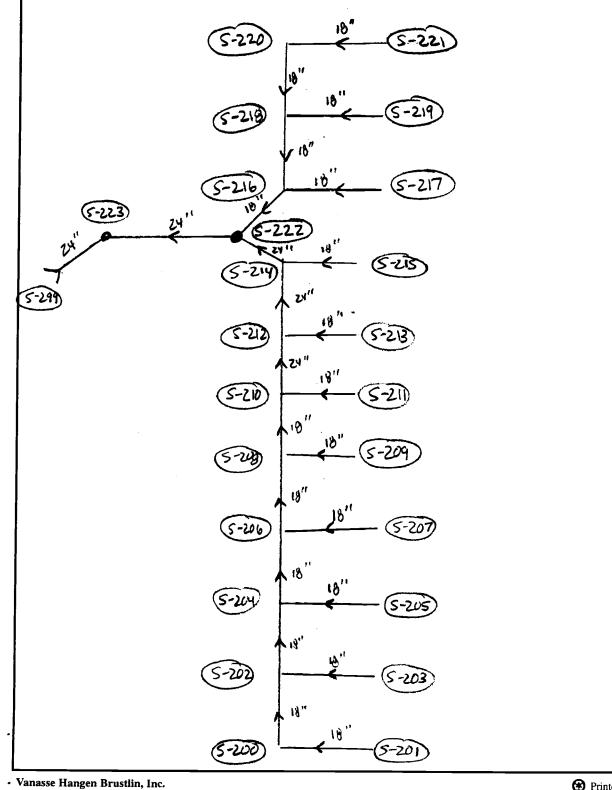

^dThe remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

^eIn some warmer climates of the country, a curve number of 96 may be used.

^fUse for temporary conditions during grading and construction.

Note: These values are for Antecedent Moisture Condition II, and $I_a = 0.2S$.

Reference: USDA, SCS, TR-55 (1984).


VHB Computations

•

÷

Í

Project Notancock Rd. Location Luke Co.	Project # 60433 Sheet of
Calculated by	Date 4/9/99
Checked by	_ Date
Title <u>Storm Sewer</u>	Nodal Diagram

Page: 1

CONDITIONS

STORM SEWER HYDRAULICS System: BASINB

Outfall Tailwater Flevatio Organization: Vanasse Hangen Brustlin. Inc. PROJECT Number: 60633

4/ 6/99

.

	00033				Organiz	ation: V	Organization: Vanasse Har	Hander	noen Brustlin Inc	5	Ż	outine lie	ther Flores			-			1		
Description:	DI: N. HANCOCK	SOCK			Designe	Designed hv. IOK	Š	DR IN		2		Cuttall Tailwaler Elevation: Exit Loss of Outsile						╡	Hunn	햔	nts
County:		TNIC	>		Chocked by:								JUITAIL			-	Zone			Area 2 /	Area 3
como?					CIECKE	ł	IM				Stor	Storm Sewer Control Elevatio	Control	Elevatio	สี	220.70	~	10	0.95	0.20	0.00
				Ī	_ [ŀ														
LHCM	2	ă	Drainage Areas	reas	<u>ှ</u>	Travel Inten.		Total	Flow (cfs)	-	Inlet Elevations	⊢	Pipe Elevations	vations	Fall	Pine	НСІ	Flow	Valority	Velocity Canacity Mann's	Mann'a
ç	r 1 -	luc.	Sub-	Sub-		Time		v S	(QD) S	Sum(Qb)	Inlet		HGL	Ľ	-	Height	(%)	Tvbe	timoin .	Capacity	אומווו ש אוימיוו א.
r ype	Bris Len		lotal	Total			-					<u> </u>	Crown Line	r Line		Width	Ľ				
000-5	0000		4	A CA	Û U U U		(In/hr)	(ac)		⊐†	-	Inc Loss	Flow Line	Line	(t t)	(in)	(%)		(tps)	(cfs)	
0- 2-2				0.56					0.00	0.0	264.29	260.62	260.62	257.20	3.416	18	1.626	Partial			
P-5	1 210 00	5.5	60.0	8 6 0 6	10.55	0.45	7.28	0.58		4.21	:		261.60					qns	7.84	16.47	0.0120
C 201	ł			3.0						4.21	3.68	0.0	260.10	255.70	4.400	18	2.095				
102-501	007-0			0.27					0.00	0.00	264.53	260.95	260.95	260.75	0.200	18	0.216	Partial		-	
123+80	40.25	0.04		0.01	10.00	0.55	7.41	0.28		2.08			261.80	261.60				super	2,82	5 29	0.0120
Р-5	1 92.50			0.0 0					i	2.08	3.58	0.00	260.30	260.10	0.200	18	0.216				200
S-202	S-204		1.01	0.96					0.00	0.00	259.95	256.32	256.32	250.70		18	2 672	Partial			
125+90				0.04	10.99	0.34	7.17	1.00		7.17			257.20	250.70		2		- 4115	10.40		0.0100
P-5	1 210.34		0.0	0.0 0						7.17	3.63	0.00	255.70	249.20	6.500	18	3 090			20.04	0.0120
S-203	S-202	0.18	0.18	0.17					0.00	0.00	260.19	257.21	257.21	257.20	0.013	e e	0.014	E III			
125+90	40.25			0.01	10.00	0.77	7.41	0.18		1.36			257.50	257.20	2	2		5	5	6 40	00100
P-5	1 92.50	0.00	0.00	0.00						1.36	2.97	000	256.00	255 70	0.300	đ	0 204		2.0	0.40	0.0120
S-204	S-206	0.21	1.41	1.34					0.00	0.00	253.54	249.93	249.93	243 80	6 12F	2 q	1 000 0	Dartial			
128+00	-40.25	0.06	0.34	0.07	11.33	0.28	7,10	1.41		10.01	2	2000	250.70		2.0	2	000.0	פייל	00 11	2	
P-5	1 200.00			0.00			2			10.01	3.62		06 070	240.00	000	Q	2 400	ans	11.82	21.14	0.0120
S-205	S-204			0.18					000		050 54		01010	01010	0.900		3.450	:			
128+00	40.25			2 2		7 67	1	000	0.00		40.007	17.002	17.062	250./0	0.013	8	0.016	Full			
P-5	1 80.50				3	10.0	14.	0.20				000	250.80	250.70					0.82	4.01	0.0120
S-206	00-20B									₽	2.03	0.0	249.30	249.20	0.100	18	0.124				_
130+00	10 0V		00			3			0.00	0.00	246.60	243.76	243.76	241.48	2.275	18	1.267	Full			
P-5	1 170 51			1.0	19.11	0.41	7.04	1.82		12.81			243.80	240.40					7.25	15.66	0.0120
2002				3.0						12.81	2.84	0.0 0	242.30	238.90	3.400	18	1.894				
120.00	10.07-0			12.0				_	0.00	0.00	246.88	243.82	243.82	243.80	0.019	18	0.024	Eul E			
P-5	1 80.50	200	0.00	20 00 00 00 00 00 00 00 00 00 00 00 00 0	00.01	0.67	7.41	0.24		1.75	000	000	243.90	243.80					0.99	4.01	0.0120
S-208	S-210			2.01					200		0.00	0.0	242.40	242.30	0.100	8	0.124				
131+82	-40.25			0 12	12 03	11	6 05	0 12	0.0		11.043	741.40	241.40		0.890	8	1.689			-	
P-5	1 53.04			0.00		;	2	2		14.79	1.63	000	238 Q0	240.20	0000	ą	277		8.37	6.99	0.0120
S-209	S-208	0.16	0.16	0.15					0.00	0.00	243.43	241 49	241 40	241 48	200	2 9	0100	l u			
131+82	-2.25			0.01	10.00	0.32	7.41	0.15		1.14			240.70	240.40	50.0	2	2	5	190		00100
P-5	1 38.00			0.00				I		1.14	1.94	0.00	239.20	238.90	0.300	18	0 789		-0.0	1	0.0120
S-210				2.19			_		0.00	0.00	242.91	240.59	240.59	240.36	0.224	24	0.427	Full			
132+37.27	•			0.12	12.13	0.17	6.93	2.31		16.01			240.20	240.00					s 10	15 10	0.0100
94	1 52.52			0.0						16.01	2.33	0.00	238.20	238.00	0.200	24	0.381		2	1.01	20.0
	n			0.09					0.00	0.00	243.23	240.59	240.59	240.59	0.001	18	0.004	Full			
12.10+201 B-G	67.7- I	5.0	0.0	0.0	10.00	0.32	7.41	0.09		0.68			240.50						0.38	10.11	0.0120
2		3		0.00						0.68	2.64	0.00	239.00	238.70	0.300	18	0.789				

Units: ENGLISH

Automated Storm sewer Analysis & Design (ASAD), copyright 1992-1997, Hiteshew Engineering Systems, Inc. Portions of ASAD were developed by Kenneth J. Leerning, P.E. at International Engineering Consultants, Inc.

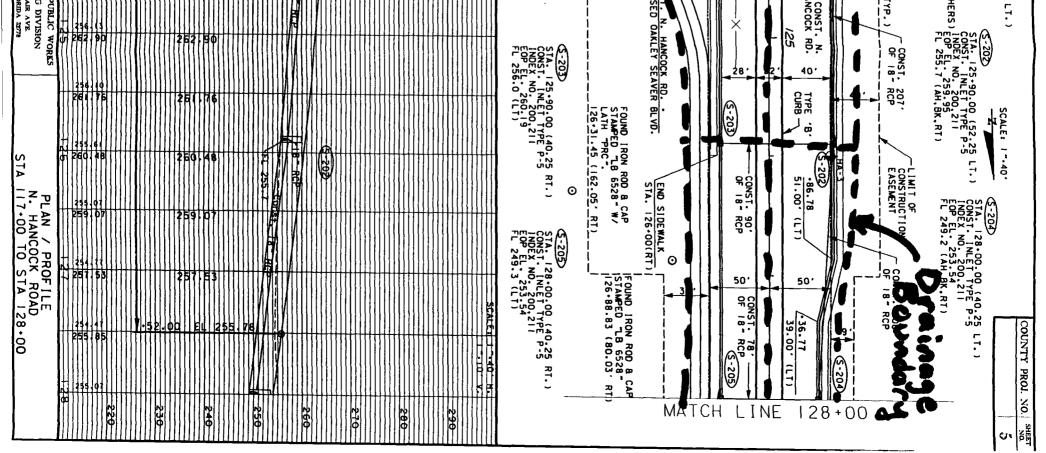
T60v11.RPT 6/3/97

4/ 6/99

-

STORM SEWER HYDRAULICS System: BASINB

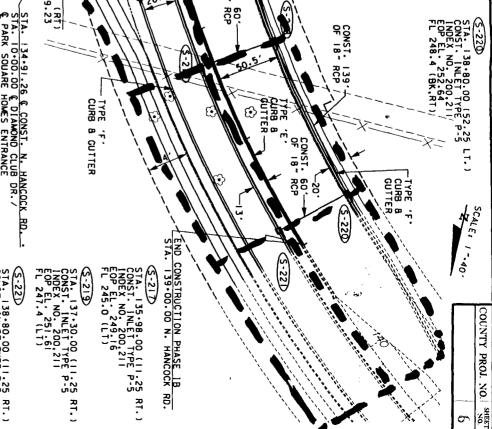
Page: 2

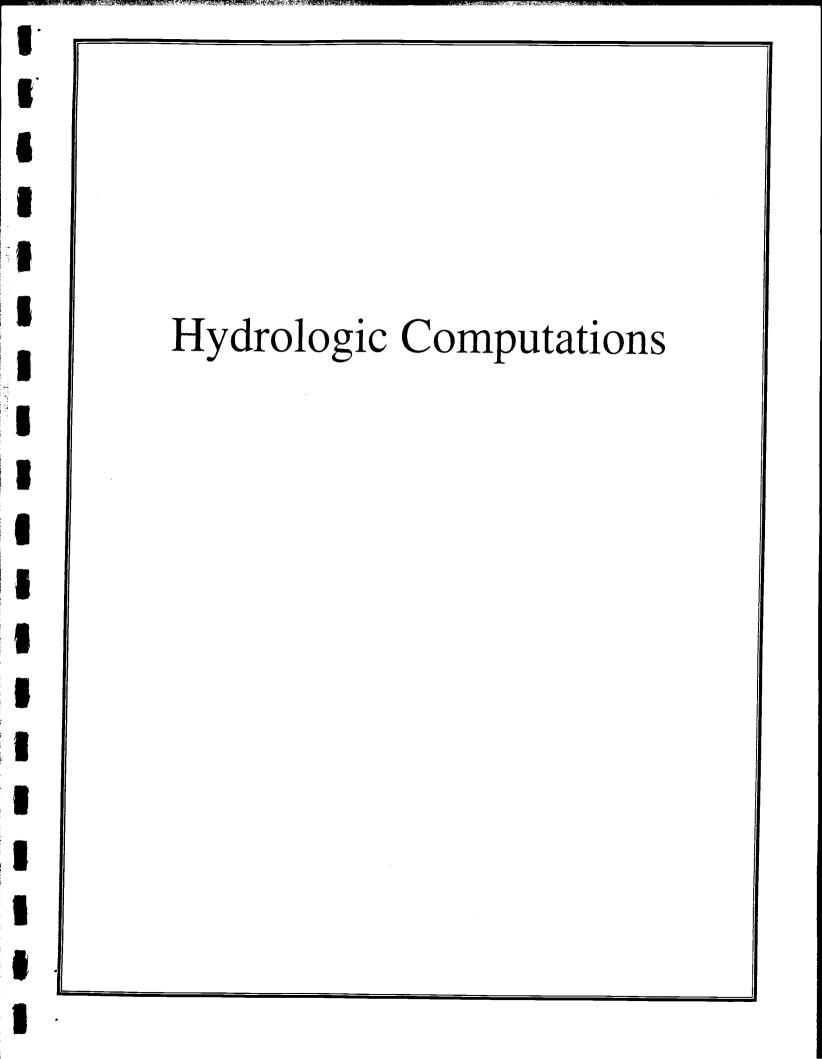

Description: Organization (1): 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	PROJECT	ECT	[Syster	System: BASINB	SINB									
$ \begin{array}{ $		60633				Organiz	ration:	/anasse	Hanne	n Brustlin	5		Hall Taily	inter Elev			000	ė	-	B	OLLIGN	SN
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N. HANC	ock			Designe	, :Vd be	IOK			j		it Loss at	valei ciev Outfall-	/auon:		88	Storm		Runoff	Coefficie	ants
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		LAKE CO				Checke	i ja k	λ				Sto	orm Sewe	r Control	Elevatio	Ñ	20.70	7	+		_	0.00
		2	Draii	nage Ari	eas		Travel	Inten.	Total	Flow (c		Inlet Ele	evations		evations		Pina	НСІ	Elow	Valocity	Canacity	Mann'a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, a	Offset	luc.	Sub-	Sub-		Time		S	_	g	Inlet	HGL		GL		Height		Type		Capacity	N'ann y
9.11 0.00 0.03 0.01 0.00 0.03 0.01 0.03 <th< td=""><td>5</td><td></td><td></td><td>10181</td><td></td><td>+</td><td></td><td>(in/hr)</td><td>(ac)</td><td>•</td><td></td><td></td><td></td><td></td><td>/n Line</td><td>141</td><td>Width</td><td>۲.</td><td></td><td></td><td>-</td><td></td></th<>	5			10181		+		(in/hr)	(ac)	•					/n Line	141	Width	۲.			-	
4423 0.00 <th< td=""><td></td><td>S-214</td><td>0.08</td><td>2.45</td><td>+</td><td>+</td><td></td><td></td><td>191</td><td></td><td>-</td><td>242 11</td><td></td><td>č</td><td></td><td>+</td><td></td><td>(%)</td><td>E</td><td>(fps)</td><td>(cfs)</td><td></td></th<>		S-214	0.08	2.45	+	+			191		-	242 11		č		+		(%)	E	(fps)	(cfs)	
S-212 Out Out Cond Cond <thc< td=""><td>-</td><td>-40.25 84.43</td><td>0.01</td><td>0.63</td><td>0.13</td><td>12.30</td><td>0.26</td><td>6.90</td><td>2.46</td><td></td><td>16.94</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.4/8</td><td>In</td><td>5.39</td><td>11.93</td><td>0.0120</td></thc<>	-	-40.25 84.43	0.01	0.63	0.13	12.30	0.26	6.90	2.46		16.94							0.4/8	In	5.39	11.93	0.0120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	·	S-212	0.08	0.08	0.0		1			000		2.75		_				0.237	Ę			
		-2.25 38.00	0.01	0.01	0.0	10.00	0.32	7.41	0.07		0.54							200.0		0.31	10.11	0.0120
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·	S-222	800	2.54	0.00			Ť			0.54	3.03	00.00	_				0.789				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-40.25	0.00	0.64	0.13	12.56	0.21	6.84	254	0.00	0.00	244.20	239.96					0.504	In			_
-2.11 0.04 0.05 111 0.22 7.41 0.03 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 10.03 11.03 11.03 11.03 27.15 241.0 240.00 10.01 11.03 11.03 11.03 11.0 11.03 11.0 11	-	71.26	0.00	0.00	0.00		;	5	5		17.40	4.29	0.00	237.80				0.281		5.54	12.98	0.0120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0-214	0.0 8	0.04	0.04					0.00	0.00	244.60						1.053	Partial			
	-	00.8E	0.0 0.0	0.00	0.00	10.00	0.22	7.41	0.04		0.32 0.32	4.03	000	241.90				1 063	critical	2.90	11.68	0.0120
		S-222	0.19	1.14	1.08				-	0.00	00.0	248.36		_				202.0	Domiol			
	•	-52.25	0.02	0.26	0.05	11.17	0.24	7.13	1.13		8.10							C3 / 3	sub	10.26	18 79	0 01 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	S-216	0.00	0.00	0.0						8.10	3.57		244.10				2.725			2	200
		11 OF	0.10	0.10	41.0 4	00.01		3	ļ	0.00	0.0	249.16		245.61				0.009	Full			
5.216 0.21 0.81 0.71 0.21 0.81 0.71 0.21 0.81 0.21 247.22 247.22 247.22 245.60 1.297 Partial 8.38 16.09 15.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 125 0.00 246.60 246.10 246.10 240.01 2100 8.38 16.09 5.2161 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.012 110 0.012 110 0.012 110 0.011 1100 0.53 7.41 0.17 1.25 3.50 0.00 248.10 248.10 2000 18 1.260 10.01 12.81 5.2526 0.00 0.00 0.00 0.00 0.00 0.00 227.40 248.31 <td>-</td> <td>63.50</td> <td>8 8 0 0</td> <td>0000</td> <td>0.0</td> <td>0.01</td> <td>56.0</td> <td>7.41</td> <td>0.15</td> <td></td> <td>1.10</td> <td>3.55</td> <td>0.00</td> <td>246.50 245.00</td> <td></td> <td></td> <td></td> <td>1 417</td> <td></td> <td>0.62</td> <td>13.55</td> <td>0.0120</td>	-	63.50	8 8 0 0	0000	0.0	0.01	56.0	7.41	0.15		1.1 0	3.55	0.00	246.50 245.00				1 417		0.62	13.55	0.0120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S-216	0.21	0.81	0.77					0.00	0.0	250.81		L	1			1 297	Partial			
S-218 0.17 0.17 0.17 0.16 0.06 0.01 0.016 0.10 0.012 Full 0.012 Full 0.011 0.02 12.77 63.56 0.00 0.00 0.00 0.00 237.41 248.90 248.10 0.008 18 0.012 Full 0.71 12.77 5.218 0.00 0.00 0.00 0.00 237.40 248.91 248.10 0.008 18 0.01 0.71 12.77 5.2218 0.00 0.00 0.00 0.00 0.00 237.40 248.91 248.10 1800 18 0.01 0.71 12.77 5.2216 0.00 0.00 0.00 0.00 0.00 0.00 247.40 248.91 248.90 248.10 12.60 12.81 5.2216 0.00 0.00 0.00 0.00 0.00 0.00 248.90 248.10 12.60 12.61 12.81 5.2220 0.20 0.00 0.00 0.00 0.00 0.00 0.00 18 12.60 12.81 12.81 5.2220 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18 12.61 12.81 5.2230 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18 12.60 12.81 5.2230 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18 <td>-</td> <td>-52.25 125.01</td> <td>0.02 0.00</td> <td>0.19 0.00</td> <td>0.0 200</td> <td>10.92</td> <td>0.25</td> <td>7.19</td> <td>0.81</td> <td></td> <td>5.80</td> <td>3 50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>sub</td> <td>8.38</td> <td>16.09</td> <td>0.0120</td>	-	-52.25 125.01	0.02 0.00	0.19 0.00	0.0 200	10.92	0.25	7.19	0.81		5.80	3 50							sub	8.38	16.09	0.0120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S-218	0.17	0.17	0.16					0.00	0.0	251.61	248.11	-		-		0.012	Et th			
5-216 0.23 0.43 0.41 0.23 0.41 0.23 0.41 0.23 0.41 0.22 0.20 0.00 0.00 1.260 1.260 1.260 1.261 1.271 1.271 1.21 1.261 1.261 1.261 1.261 1.261 1.261 1.271 1.271 1.21 1.261 1.261 1.261 1.261 1.261 1.271 1.271 1.21 <	-	11.25 63.50	0.00 0.00	0.00 0.00	0.01 0.00	10.00	0.53	7.41	0.17		1.25	2 50		248.90						0.71	12.77	0.0120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S-218	0.23	0.43	0.41					0.00	0.00	252.64		+		+		1.260	Dadial			
S-220 0.20 0.00 0.019 0.00 0.013 7.41 0.21 0.00 $2.46.60$ 1.800 18 1.267 0.019 Full 0.018 12.77 11.25 0.00 0.00 0.00 0.00 253.44 249.91 249.90 0.012 18 0.019 Full 0.88 12.77 63.50 0.00 0.00 0.00 0.00 253.44 249.91 249.90 0.012 18 0.019 Full 0.88 83.20 0.00 0.00 0.00 $2.50.70$ 249.90 248.40 0.800 18 1.260 0.88 84.20 0.00 0.00 0.00 2.600 246.00 232.94 232.94 0.00 24.76 0.88 84.20 0.00 0.00 0.00 0.00 246.00 232.94 232.94 0.00 24.00 0.08 9.00 0.00 0.00 0.00 246.00 232.94 223.94 0.00 24.00 0.08 9.00 0.00 0.00 0.00 246.00 223.00 224.00 24.00 0.00 9.00 0.00 0.00 0.00 246.00 222.00 224.00 24.00 0.00 9.00 0.00 0.00 0.00 221.24 221.24 221.74 241.124 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>-</td><td>-52.25 142.03</td><td>0.03</td><td>0.11</td><td>0.02</td><td>10.53</td><td>0.40</td><td>7.28</td><td>0.43</td><td></td><td>3.15</td><td>i</td><td></td><td></td><td></td><td></td><td></td><td>000.0</td><td>sub</td><td>5.99</td><td>12.81</td><td>0.0120</td></td<>	-	-52.25 142.03	0.03	0.11	0.02	10.53	0.40	7.28	0.43		3.15	i						000.0	sub	5.99	12.81	0.0120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-220	0.20	0.20	0.19					000	61.5	3. /4		-				1.267				
63.50 0.00 246.00 248.40 0.800 18 1.260 0.08 12.77 -84.00 0.00 0.00 0.00 246.00 232.94 232.94 25.04 5.174 Partial 17.30 55.74 -84.00 0.00 0.00 0.00 246.00 232.94 232.04 25.04 0.00 24.76 0.00 55.74 237.00 55.74 5174 Partial 17.30 55.74 193.29 0.00 0.00 0.00 230.00 232.00 224.00 0.000 246.00 55.74 5174 Partial 17.30 55.74 193.29 0.00 3.68 2.5.02 13.06 0.00 221.24 220.12 21.24 50.74 50.74 5174 <td></td> <td>11.25</td> <td>0.08</td> <td>0.08</td> <td>0.02</td> <td>10.00</td> <td>0.53</td> <td>7 41</td> <td>120</td> <td>0000</td> <td>1 55</td> <td>44.002</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.019</td> <td>i i i i i i i i i i i i i i i i i i i</td> <td></td> <td></td> <td></td>		11.25	0.08	0.08	0.02	10.00	0.53	7 41	120	0000	1 55	44.002						0.019	i i i i i i i i i i i i i i i i i i i			
0.00 3.68 3.50 0.19 6.80 3.68 0.00 0.00 24 5.174 Partial 0 0 0.00 0.89 0.18 12.78 0.19 6.80 3.68 25.02 13.06 0.00 234.00 224.00 24 5.174 Partial 17.30 55.74 0.00 0.00 0.00 0.00 25.02 13.06 0.00 232.00 224.00 24 5.174 Partial 17.30 55.74 0.00 0.00 0.00 26.00 221.24 221.01 24 1.031 Full 17.30 55.74 0.00 0.00 0.00 226.00 221.24 221.74 220.70 10.031 Full 7.92 15.13 0.00 0.00 0.00 24.88 4.76 0.00 220.30 220.70 0.541 24 10.01 0.00 0.00 0.00 0.00 22.090 220.20 0.220.70 0.361	-	63.50	0.00	0.00	0.0		3				1.55	3.53	0.00	249.20				1.260		0.88	12.77	0.0120
0.00 0.089 0.18 12.78 0.19 6.80 3.68 25.02 13.06 0.00 224.00 24.00 24.00 5.174 sub 17.30 55.74 0.00 0.00 0.00 0.00 0.00 225.02 13.06 0.00 222.00 10.000 24 5.174 which is the image of th		S-223	0.00	3.68	3.50					0.00	0.00	246.00			1	+		5.174	Partial			
0.00 3.68 3.50 0.00 0.00 2.66.00 221.24 221.24 221.24 2.1/4 1.031 Full 7.92 15.13 0.00 0.89 0.18 12.96 0.00 6.77 3.68 24.88 4.76 0.00 218.90 220.70 0.541 24 1.031 Full 7.92 15.13 0.00 0.00 0.00 218.90 218.90 218.70 0.381 7.92 15.13	-	-84.00 193.29	0.0	0.00	0.18	12.78	0.19	6.80	3.68		25.02	13 06		234.00				ļ	qns	17.30	55.74	0.0120
0.00 0.89 0.18 12.96 0.00 6.77 3.68 24.88 4.76 0.00 220.90 220.70 24 0.20 15.13 0.00 0.00 0.00 0.00 2.00 24 0.00 218.90 218.70 0.200 24 0.02 15.13		S-299	0.00	3.68	3.50		-			0.00	000	226.00		_	-			0.1/4 1 031				
0.00 0.00 0.00 24 0.381 4.76 0.00 218.90 218.70 0.200 24 0.381		-277.00	0.00	0.89	0.18	12.96	0.00	6.77	3.68		24.88							- <u></u>		7 00	15 13	00100
	-	52.50	0.00	0.00	0.00						24.88	4.76	0.00	218.90	1			0.381		10.1	2	0.01210.0

Units: ENGLISH

Automated Storm sewer Analysis & Design (ASAD), copyright 1992-1997, Hiteshew Engineering Systems, Inc. Portions of ASAD were developed by Kenneth J. Leeming, P.E. at International Engineering Consultants, Inc.

T60v11.RPT 6/3/97


\$\$\$\$\$\$\$\$YT IME \$\$\$\$\$\$ \$*\$\$\$\$DRSPECIFICAT ION\$\$\$\$\$	
290 290 270 270 270 270	
	STA. 117:15 EOPEL NO. 258.5 (LT) FL 258.5 (LT) F
рессируителя и станализация и станализаци	
	STA. 117.15.00 (52.2 CONST. 1.10.15.00 (52.2 CONST. 1.17.15.00 (52.2 CONST. 1.17.15.00 (52.2 STA. 117.41) BECIN CON STA. 117.41 MATCH EXI MATCH EXI MATCH EXI MATCH EXI CONST. 10.25 RT. 10.25 RT. 11.2 11
2 NA C NA	T.) CONST. 119.15.00 (40,200,211) FL 261.4 (BK,RT) ING PAVEMENT N. HANCOCK RD. ING PAVEMENT NG PAVEMENT SI.00' (RT) I. 00' (RT) SI.00' (LT) I. 00' (RT) SI.00' (LT) I. 00' (RT) SI.00' (LT) I. 00' (RT) SI.00' (LT) I. 00' (LT) SI.00' (LT) I. 00' (RT) SI.00' (LT) I. 00' (LT) I. 00' (LT) SI.00' (LT) I. 00' (LT)
	CON PHASE IB HANCOCK RD AVEMENT PROPOSED WATER WAIN (BY OTHERS)
	RT
258,50 ∞266+62 □ □ □ □ □ □ □ □ □ □ □ □ □	
	RELOCATE E POMER POLE
	RELOCATE E POWER POLE
	FOUND IRON ROD B STAMPED TUB 6528 IZ2-75.81 (50.09 SITYP.) SITYP.) SITYP.) SITYP.) SITYP.) SITYP.] SIT
┆ ┃	
	AP EASEMENT- LT) R/W LI 81.28 101.54' (L EL. 263.50 37'28'E B (LT) B' (LT) B' (LT)
	PERMANENT EASEMENT R /W LINE *81.28 101.54' (LT) EL. 263.50 EL. 263.50 EL. 263.50 EL. 263.50 EL. 263.50 EL. 263.50 FOR B GUTTER B GUTTER B GUTTER FOR PROFI 6528 PROFI 9.92' RT)
256.sn 266.60	
$\frac{1}{1256.86}$	
256.174	
255.52 265.52 265.52 265.52 265.52	
	T (-20) STA. 123.80.00 (5 INDEX: NO. 201 TYPE EVEN: 264.29 -17.29 -17.29 -17.29 -17.29 -17.29 -101.62. (LT) EL. 263.74 -1.2 -1
	CURB CUT A CURB CUB A CUB A CU
PLOBER A AL	P CTYP.)



\$\$\$\$\$*\$*LGNSPECIFICATION\$\$\$\$\$\$ SET 3/8 " STAMPED "L 129-62.16 STA. 130-00.00 (40.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 200.211 EOP EL. 246.60 FL 242.3 (AH,BK.RT) FOUND. NAIL NO ID & LATH "TRAV. PT. 4252" 128-60.66 (19.30" RT) 280 220 240 5-200 ٩ĕ TA. 130+00.00 (40.25 RT.) ONST. INLET TYPE P-5 ONEX NO. 200,211 OPEL. 246.88 L 242.4 (LT) MATCH 202 239.2 LINE 131+82.00(2.25 LT.) X. UNLET TYPE P-5 EL. 243.43 19.2 (LT) 8≯ 6-203 254 128+00 - IRON ROD & CAP -"L8 4207 TRAV. PT" 6 (22.73' RT) 249. CONSTRUCTION EASEMENT ₩8. 28 50 R/W LINE STA. 132+37.27 (2.25 LT.) CONST. INLET TYPE P-6 INDEX NO. 200,211 EOP EL. 243.23 FL 239.0 (LT) 857 (A 50 -21 (5-208) STA. 131.82.00 (40.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 200.211 EOP EL. 243.11 FL 238.9 (AH.BK.RT) STA. 132+37.27 (40.25 L CONST. INLET TYPE P-6 INDEX NO. 200.211 ECP EL. 242.91 FL 238.7 (BK.RT) FL 238.2 (AH) SET IRON ROD & CAP STAMPED "L8 4207" 131-20.74 (0.00' LT) OF 18" 5-210 ·05.35 ខ /00 HANCOCK 5 197' 0 5-202 (RT) /W LINE SUPERELEVATION TRANS TION R -18 " RCP 5-200 VFL 242. OF 18" RCP 11.00 OF 18 (5-213) STA. 132+92.00 (2.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 200,211 EOP EL. 243.43 FL 239.2 (LT) CONST. LT.) 200 (RT) D PISIA 138-54.46 D FIZ 32 11.91 (LT) D - 57.43" 45.48" L - 1.266.00" T - 73.372 R - 1.070.00" PC Sia 1.31-20.74 PT Sia 143-86.74 RCP 7 DATE •22.21 1.00[°] SIDEWALK STA. 132+92.00 (40.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 200,211 EOP EL. 243.11 FL 238.0 (BK,AH) FL 238.9 (RT) (LT) 5-212 FL 238.97 OF 18-Sta 131-20.74 æ 29 420 V.C. OF B" RCP 5-200 во RCP -<u>S-213</u> STA. 133-80.00 (2.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 200,211 EOP EL. 244.60 FL 240.4 (LT) . 80 T S-200 CONST. 50'7 TYPE 'F' CURB & CUTTER C-222 STA: 134-40.00 (84 CONST. MANHOLE TYP INDEX NO. 200(20) FL 245.00 FL 232.0 (LT) FL 237.6 (8K) FL 237.6 (8K) FL 240.0 (AH) 8 12.00 7.98.7 CURB 5-210 (S-21) A Sonste œ GU 1 1 5 1 18 - RCP (-214) STA. 133+80.00 (40.25 LT.) CONST. INLET TYPE P-5 INDEX NO. 2000.211 INLET EL. 244.25 FL 237.8 (BK, AH) FL 240.0 (RT) 238.9-OF 24" RCP GUT CURB (84.00 LT.) 6-212 5-212 FOR CONTINUATION 1 ft 238.0 ft 237.8 507134 - 24 " RCP-FL 240.0" CONST. CONST. +45.46 104.666 (LT) EL. 246.58 46.06 92.63' (L 0F 24" RCP CONSTRUCTION 52 OF 24" RCP © PARK SQUARE HOMES ENTRANCE (BY OTHERS) T. 188 4" RCP RCP - 35 6-2-9 12.26 105.44 EL. 2 3 •23.56 246. (12.5) 98.00 EL. 2 247.06 RCP F L 237.61 ZH RCP 90.00 þφ 96.92' (EL. 246. 245.52 45 20 232.0 39. غ ا SET IRON ROD 8 STAMPED "L84207 135+46.40 (127. 2 VHB ORT OF CURB GUTTE TYPE ', CURB B GUTTER ,°° 17.0 24 Ĥ ILE GRADE Ą 5. ۲. ۲. 240.0 RCP Toust 18 - BGB :=: VANASSE HA TRANSPORTAT 20 CAP 7 TRAV. PT~ -----24 ы С TRA REVERS 51.00' (I EL. 248. ·92.66 0 , в _E 10, ==: ò AND 105.44' (LT) EL. 247.06 •37.07 EL. 246. STA. 135+98.00 (52.25 L CONST. INLET TYPE P-5 INDEXT. 0.200.211 EOP EL. 248.36 FL 244.1 (8K.RT.AH) D DEVELOPMENT. 5-210 CROWN 18 . NCh 8 TA. 137+30.00 (52.25 1 NAST. INLET TYPE P-5 NAST. VINLET TYPE P-5 NP EL: 250,211 P EL: 250.81 246.6 (BK.RT.AH) 839 SU 218 25 1-E : 150 9-4006 R +06.77 EL. 96.92' (RT) EL. 246.00 ٦ .58 [] OF C DIAMOND CLUB C NB LANES Ê •28.61 98.06' (RT) EL. 245.52 LAKE CONST. ENGINEERING -CONST. 60' OF 18" RCP 5 ĘЦ QD COUNTY STA A CONST ND C **ISIX** HA-4 RCP-LT.] LT.) DR. 92

	•00	ROFILE ROAD STA 139	PLAN / PR HANCOCK 28.00 TO	PL STA 128		WORKS	PUBLIC WO G DIVISION AIR AVE MIDA 2778
Ô	- 25 - 2	9 2 2	25 25	2	25 1 3 8 2 25	7 25	
	51.	51.	52.	2		52	
	94	611 88	16	25 60 35	92 25	2	89
210							
220				100 1.0.			
				K • 212			
230							
	2		2	2	2	2	
	5.	5					
	9	6		6	9		
240			6	0			
			248.44		246-6		
							R R
				IN RCP			
250					RCP		
						6-2-8	
		(+) <	5-220A				
П	Ц						
260							
П							
	2					ING GROUND LINE	
610							
	3			1.			
	9				N. HANCUCK	00.00	<u>4</u> 54
				II.]-		
					PHASE		
) 						
280	4						
	Ð,						
	1.10 V						
	40 1.	SCALE					
	49.2 (LT)	EOP EL. 25 FL 249.2 (•
ΰ	•	INDEX NO.					
25 RT.)	0.00 (11.25	STA. 138.8		FRANCE	HOMES ENTRANCE	PARK SOUARE	-Pi
		122.5	i) CLUB DR. /		STA. 10.00.00	ST/

\$\$\$\$\$\$\$SYTIME\$\$\$\$\$\$

VHB Computations
Project N: Handlele Rd. Project # 60633
Location Lale Q. Sheet 1 of 2
Calculated by PLUY Date 4199
Checked by Date
Tite
I. Compute Treatment Volume
Existing Area to clepression = 38.14c
Abolitional Area to clepression = 1.75 Ac (A to 200/205)
(North Itancock)
Abolition Area to clepression = 0.30 Ac (North of 200/205)
(North Itancock)
Total Area 40.15 Ac

$$TV_1 = (40.15 Ac)(1in)(\frac{164}{120n}) = 3.35 Ac-F4$$

 $TV_2 = (4.13 Ac)(1.75.n)(\frac{164}{120n}) = 0.60 Ac-F4$
 $i. Use TV = 3.35 Ac-F4$
Rewery Win 72-Nevrs
2. Compute Runoff Volume 25-96 hour Storm Event
 $P = 11.9 in$
 $A = 40.2 Ac$
 $cN = 39$

Vanasse Hangen Brustlin, Inc.

Printed on Recycled Paper

VHB Computations

Project N. Honcock Rcl	_ Project # _ 60633
Location Lake CO	_ Sheet _ Z of _ Z
Calculated by PwY	_ Date_ 3/19/99
Checked by	_ Date
Title	

$$Q = \frac{(P - 0.2S)^{2}}{(P + 0.8S)}$$

$$S = \frac{1000}{CN} - 10 \implies S = \frac{1000}{39} - 10 \implies S = 15.64$$

$$Q = \frac{[1.8 - (0.2)(15.64)]^{2}}{(11.8 + (0.8)(15.64)]} \implies Q = 3.09 \text{ in}$$

$$RV = (3.09 \text{ in})(40.15 \text{ kc})(\frac{1.14}{1210})$$

$$RV = 10.35 \text{ ac} - F + \frac{1}{1200}$$

Vanasse Hangen Brustlin, Inc.

.

G Printed on Recycled Paper

	Ru	unoff Curve	e Numbe	r		
Project: Location: Basin: Condition:	North Hancock Rd Pond B (Depression) B Pre-development				Computed by: Date: Checked: Date:	PWY 12/14/98
Soil Name and Hydrologic Group	Cover Description	Table 2-2	CN Fig. 2-3	Fig. 2-4	Area (acres)	Product of CN x Area
Astatula (A)	Orange Grove (fair condition)	32			38.10	1219.2
						0.0
				` <u> </u>		0.0
				Totals =	38.10	1219.2
CN (Weighted)	= (total product)/(total area) =		32.00	Use CN =	32]
Directly Conne	ected Impervious Area (%)=		0.0			
CN (NDCIA) =			32.00	Use CN =	32]
/anasse Hange Reference: S(

.

•

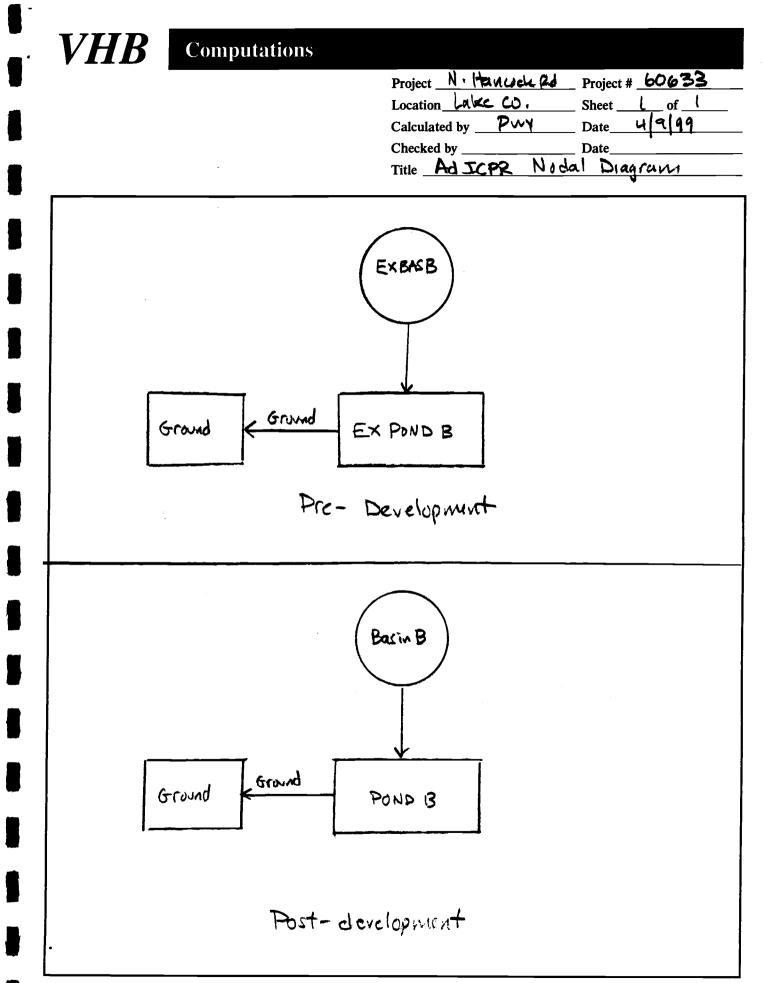
•

Runoff Curve Number						
Project: Location: Basin: Condition:	North Hancock Rd Pond B (Depression) B Post-development				Computed by: Date: Checked: Date:	PWY 3/18/99
Soil Name and Hydrologic Group	Cover Description	Table 2-2	CN Fig. 2-3	Fig. 2-4	Area (acres)	Product of CN x Area
Astatula (A)	Open Space (good condition)	39			0.96	37.4
Astatula (A)	Orange Grove (fair condition)	32			34.81	1113.9
Impervious	Roadway Pavement	98			4.38	429.2
				Totals =	40.15	1580.6
CN (Weighted)	= (total product)/(total area) =		39.37	Use CN =	39]
Directly Conne	ected Impervious Area (%)=		10.9			
CN (NDCIA) =			32.19	Use CN =	32]

Vanasse Hangen Brustlin, Inc. Reference: SCS TR-55

.

Stage-Storage-Area Computation


Project:	N. Hancock Rd.		
Basin:	Segment 2 (Pre-development)		
Pond:	N/A		
Computed by:	PWY	Checked by:	
Date:	11/3/98	Date:	

Elevation (ft)	Area (acres)	Ave Depth (ft)	Incremental Volume (acre-ft)
188.0	0.02	0.00	0.00
190.0	0.13	2.00	0.150
195.0	0.51	5.00	1.600
200.0	0.97	5.00	3.700
205.0	1.56	5.00	6.325
220.0	3.68	15.00	39.300
230.0	5.67	10.00	46.750
235.0	7.88	5.00	33.88
Total			131.70
noff Volume		15.40	(acre-ft)

Runoff Volume15.40(acre-ft)Elevation (@ Runoff Volume)=237.66(feet)

Vanasse, Hangen, Brustlin, Inc.

.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

North Hancock Road 25-year 96-hour PWY 4-6-98

.

Basin Name:	EXBASB	BASINB
Group Name:	BASE	BASE
Node Name:	EXPONDB	PONDB
Hydrograph Type:	UH	UH
Unit Hydrograph:	UH484	UH484
Peaking Factor:	484.00	484.00
Spec Time Inc (min):	4.60	4.60
	4.60	
Rainfall File:	SJRWMD96	SJRWMD96
Rainfall Amount (in):	11.80	11.80
Storm Duration (hr):	96.00	96.00
Status:	ONSITE	ONSITE
Time of Conc. (min):	34.50	34.50
Lag Time (hr):	0.00	0.00
Area (acres):	38.10	40.15
Vol of Unit Hyd (in):	1.00	1.00
Curve Number:	39.00	39.00
DCIA (%):	0.00	0.00
Time Max (hrs):		60.18
	58.41	
	3.09	
Runoff Volume (cf):	427143	450126

[1]

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road 100-year 96-hour PWY 4-6-98

.

-

Basin Name:	EXBASB	BASINB
Group Name:	BASE	BASE
Node Name:	EXPONDB	PONDB
Hydrograph Type:	UH	UH
Unit Hydrograph:	UH484	UH484
Peaking Factor:	484.00	484.00
Spec Time Inc (min):	4.60	4.60
Comp Time Inc (min):	4.60	4.60
Rainfall File:	SJRWMD96	SJRWMD96
Rainfall Amount (in):	14.90	14.90
Storm Duration (hr):	96.00	96.00
Status:	ONSITE	ONSITE
Time of Conc. (min):	34.50	34.50
Lag Time (hr):	0.00	0.00
Area (acres):	38.10	40.15
Vol of Unit Hyd (in):	1.00	1.00
Curve Number:	39.00	39.00
DCIA (%):	0.00	0.00
Time Max (hrs):	60.18	60.18
Flow Max (cfs):	99.05	104.38
Runoff Volume (in):	5.05	5.05
Runoff Volume (cf):	698120	735683

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

•

-

North Hancock Road 100-year 96-hour PWY 4-6-98 ^ (Time units - hours)

Max Outflow (cfs)	0.00 0.00 0.00
Max Time Outflow	0.00 0.00
Max Inflow (cfs)	77.41 0.00 81.58
Max Time M Inflow	60.00 0.00 60.00
Max Surface Area (sf)	82694.25 0.00 85426.29
Max Delta Stage (ft)	0.0489 0.0000 0.0499
Warning Stage (ft)	235.00 0.00 235.00
Max Stage (ft)	207.39 150.00 207.84
Max Condi	96.01 0.00 96.01
Group Name (BASE BASE BASE
Node Name	EXPONDB GROUND PONDB

[1]	<u>-</u>
(ICPR Ver 2.11)	
Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11	Copyright 1995, Streamline Technologies, Inc.

,

-

North Hancock Road 100-year 96-hour PWY 4-6-98 ^ (Time units - hours)

Max Outflow (cfs)	0.00 0.00 0.00
Max Time Outflow	0.00
Max Inflow (cfs)	43.62 0.00 45.96
Max Time Inflow	60.00 0.00 60.00
Max Surface Area (sf)	60818.02 0.00 62714.48
Max Delta Stage (ft)	0.0486 0.0000 0.0498
Warning Stage (ft)	235.00 0.00 235.00
Max Stage (ft)	203.61 150.00 203.98
Node Group Max Time Name Name Conditions	96.01 0.00 96.01
Group Name	BASE BASE BASE
Node Name	EX PONDB GROUND PONDB

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road

200

0

-----Class: Node-----Name:EXPONDBBase Flow(cfs):0Init Stage(ft):188Group:BASELength(ft):0Warn Stage(ft):235 Comment: pre-development Stage(ft) Area(ac) 1880.021900.131950.51 200 0.97 1.56 205 220 3.68 5.67 230 235 -----Class: Node-----Name:GROUNDBase Flow(cfs):0Init Stage(ft):150Group:BASELength(ft):0Warn Stage(ft):0 Group: BASE Comment: Time(hrs) Stage(ft) 0 150 100 150 -----Class: Node-----Name:PONDBBase Flow(cfs):0Init Stage(ft):188Group:BASELength(ft):0Warn Stage(ft):235 Comment: Stage(ft) Area(ac) 188 0.02 190 0.13 195 0.51 0.97 200 205 1.56 220 3.68 5.67 7.88 230 235 -----Class: Operating Table-----Name: GROUND Type: Rating Curve Comment: U/S Stage(ft) Discharge(cfs) 188 Ο

Copyright 1995, Streamline Technologies, Inc. North Hancock Road -----Class: Rating Curve------Name: GRNDIN Count: 1 From Node: PONDB Group: BASE Flow: Positive To Node: GROUND Group: BASE
 NAME
 ELEV ON(ft)
 ELEV OFF(ft)

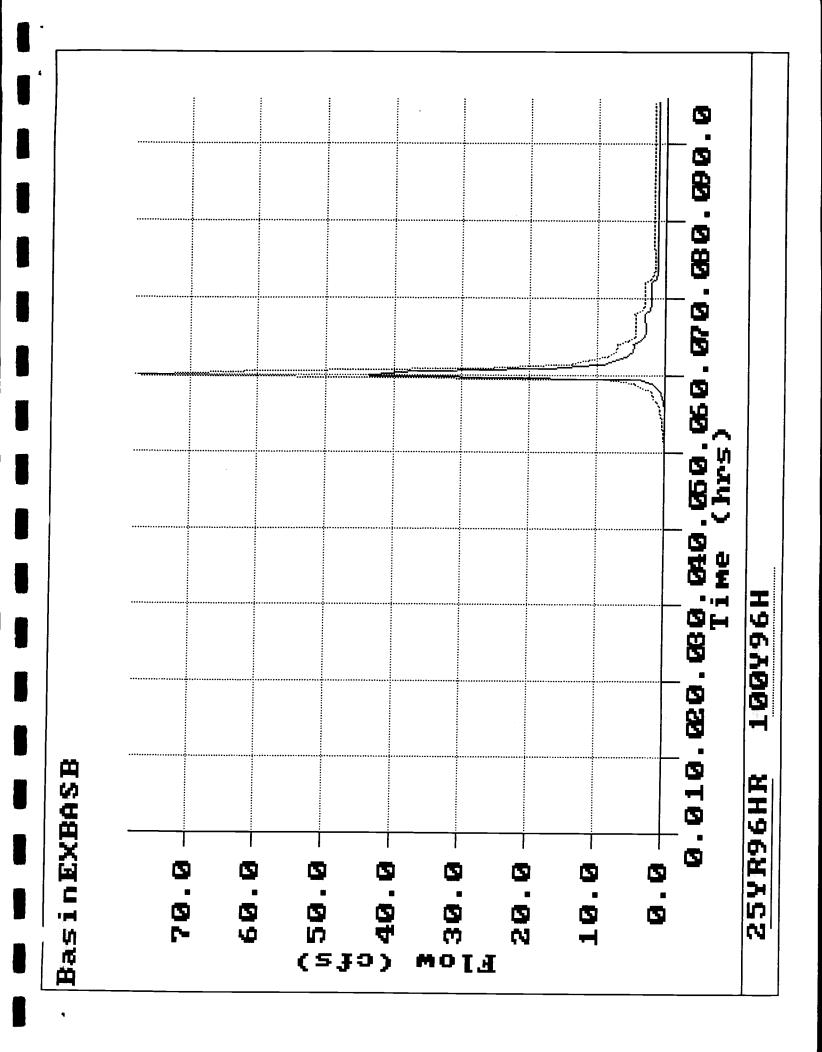
 #1: GROUND
 188
 187.9

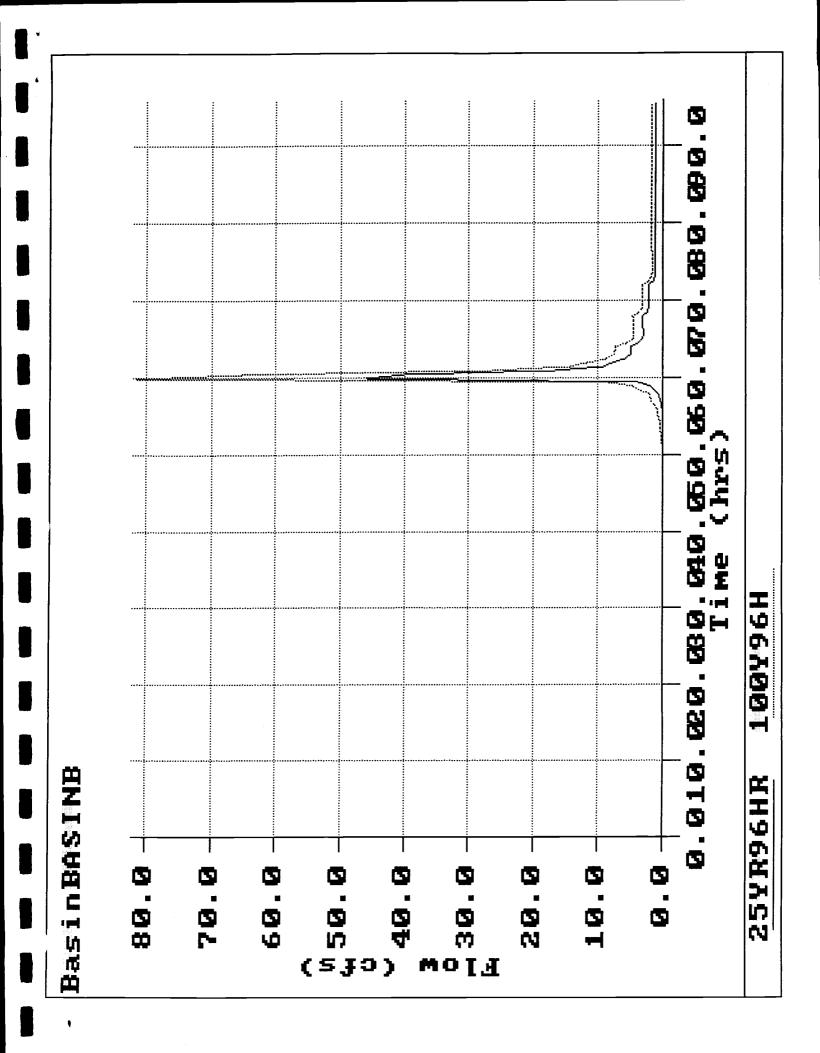
 #2:
 0
 0
 #2: #3: 0 0 0 0 #4: -----Class: Rating Curve------Name: GRNDINEX Count: 1 From Node: EXPONDB Group: BASE Flow: Positive To Node: GROUND NAME ELEV ON(ft) ELEV OFF(ft) #1: GROUND 188 187.9 #2: 0 0 #3: 0 0 #4: 0 0 -----Class: Simulation------P:\60633\TECH\ADICPR\SIM\BASINB\10YR24HR Execution: Both Header: North Hancock Road 10-year 24-hour PWY 4-6-98 Max Delta Z (ft): 1 Delta Z Factor: 0.05 Override Defaults: Yes Time Step Optimizer: 10 Storm Dur(hrs): 24 Drop Structure Optimizer: 10 Rain Amount(in): 7.4 Sim Start Time(hrs): 0 Sim End Time(hrs): 30 Rainfall File: FLMOD Min Calc Time(sec): 0.5 Max Calc Time(sec): 30 To Hour: PInc(min): To Hour: PInc(min): 10 60 30 30 15 15 30 60 + BASE [04/06/99]

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [2]

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [3] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road


-----Class: Simulation------P:\60633\TECH\ADICPR\SIM\25YR24HR Execution: None Header: North Hancock Road 25-year 24-hour PWY 4-6-98 Max Delta Z (ft): 1 Delta Z Factor: 0.05 Override Defaults: Yes Time Step Optimizer: 10 Storm Dur(hrs): 24 Drop Structure Optimizer: 10 Rain Amount(in): 8.6 Sim Start Time(hrs): 0 Rainfall File: FLMOD Sim End Time(hrs): 30 Min Calc Time(sec): 0.5 Max Calc Time(sec): 30 To Hour: PInc(min): To Hour: PInc(min): 10 60 30 30 15 15 30 60 ------GROUP SELECTIONS------+ BASE [11/03/98] ------Class: Simulation------P:\60633\TECH\ADICPR\SIM\100YR24H Execution: None Header: North Hancock Road 100-year 24-hour PWY 4-6-98 Max Delta Z (ft): 1 Delta Z Factor: 0.05 Override Defaults: Yes Time Step Optimizer: 10 Storm Dur(hrs): 24 Drop Structure Optimizer: 10 Rain Amount(in): 10.6 Sim Start Time(hrs): 0 Rainfall File: FLMOD Sim End Time(hrs): 30 Min Calc Time(sec): 0.5 Max Calc Time(sec): 30 To Hour: PInc(min): To Hour: PInc(min): 60 10 30 30 15 15 60 30 -----GROUP SELECTIONS------+ BASE [11/03/98]


Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [4] Copyright 1995, Streamline Technologies, Inc.

North Hancock Road

------Class: Simulation-----P:\60633\TECH\ADICPR\SIM\BASINB\25YR96HR Execution: Both Header: North Hancock Road 25-year 96-hour PWY 4-6-98 Max Delta Z (ft): 1 Override Defaults: Yes Delta Z Factor: 0.05 Storm Dur(hrs): 96 Rain Amount(in): 11.8 Time Step Optimizer: 10 Drop Structure Optimizer: 10 Sim Start Time(hrs): 0 Rainfall File: SJRWMD96 Sim End Time(hrs): 100 Min Calc Time(sec): 0.5 Max Calc Time(sec): 30 To Hour: PInc(min): 100 15 To Hour: PInc(min): 96 30 96 -----GROUP SELECTIONS----------+ BASE [04/06/99] -----Class: Simulation-----P:\60633\TECH\ADICPR\SIM\BASINB\100Y96H Execution: Both Header: North Hancock Road 100-year 96-hour PWY 4-6-98 Max Delta Z (ft): 1 Delta Z Factor: 0.05 Override Defaults: Yes Time Step Optimizer: 10 Storm Dur(hrs): 96 Rain Amount (in): 14.9 Drop Structure Optimizer: 10 Sim Start Time(hrs): 0 Rainfall File: SJRWMD96 Sim End Time(hrs): 100 Min Calc Time(sec): 0.5 Max Calc Time(sec): 30 To Hour: PInc(min): To Hour: PInc(min): 100 30 30 96

+ BASE [04/06/99]

