

Bound Reports 1720

Report of Subsurface Exploration and Geotechnical Engineering Evaluation, Knapp Property - East Parcel Lake County, Florida

 \mathbf{V}

. .

ľ,

OCT 09 1997 OCT 09 1997 40-069-0281 A-ERP RECURDS ORIANDO ORLANDO SJR WMD

September 24, 1997 Project No. W97-G-238

TO: GREATER CONSTRUCTION CORPORATION 1105 Kensington Park Drive Winter Park, Florida 32714

ATTN: Mr. Hamp Conley

RE: Report of Subsurface Exploration and Geotechnical Engineering Evaluation, Knapp Property - East Parcel Lake County, Florida

Dear Mr. Conley:

Subsequent to your authorization and in general accordance with our proposal dated July 24, 1997, Nodarse & Associates, Inc. (N&A) has performed a subsurface exploration and geotechnical engineering evaluation for the above-referenced project. The purpose of this exploration was to explore subsurface conditions at the site and to develop geotechnical engineering recommendations for the planned development at the above-referenced site. This report describes our exploration procedures, exhibits the data obtained, and presents our conclusions and recommendations regarding the geotechnical engineering aspects of site development.

SITE AND PROJECT DESCRIPTION

The subject site is located within Section 27, Range 26 East, Township 22 South in Lake County, Florida. More specifically, the subject site is located southeast of State Road 50 and Hancock Road intersection. Based on a plan provided by Jim Branch, P.E. with Conklin Porter and Holmes Engineers, Inc. (CPH), we understand the proposed project will consist of a subdivision comprising approximately 60 acres with 180 lots, a retention pond and roadways. Elevations at the site range from +227 feet NGVD at the north end to +135 feet NGVD at the south end of the site.

Geotechnical, Environmental Geotechnics & Material Engineers

1030 North Orlando Avenue
Suite A
Winter Park, Florida 32789
Telephone 407.740.6110
Facsimile 407.740.6112
e-mail nodarse@nodarse.com

Considerable cut and fill terracing of the site is anticipated. Preliminary ponds include a single pond site at the southeast corner of the site with an overflow drainage soakage swale along the south side of the pond edge.

SUBSURFACE EXPLORATION

For this study, six (6) Standard Penetration Test (SPT) borings (TB-2 through TB-7) to depths of 20 feet and nine (9) machine auger borings (AB-2 through AB-10) to depths of 15 to 20 feet were performed in the proposed interior roadway areas. One (1) machine auger boring (AB-1) was performed to a depth of 30 feet and one (1) SPT boring (TB-1) was performed to a depth of 40 feet in the proposed retention pond area. The borings were located in the field by referencing prominent site features, estimating right angles and taping from these features. Therefore, the boring locations shown on **Figure 1** in the **Appendix** should be considered approximate.

Standard Penetration Tests were performed continuously in the SPT borings to a depth of ten (10) feet and at five (5) foot depth intervals thereafter. Each sample was removed from the sampler in the field and was examined, packaged and sealed for transportation to our laboratory for further examination and visual classification. Water levels were measured in the boreholes at the time of our field exploration to evaluate the depth to groundwater.

The machine auger borings were performed by hydraulically turning a 4 inch diameter continuous flight auger into the ground in 5 foot increments. Additional flights were added until the desired termination depth was achieved. The auger was then extracted without further rotation and representative soil samples were retrieved from the auger. Samples were visually classified in the field and were then bagged and returned to our soils laboratory for further classification and testing.

GENERAL SUBSURFACE CONDITIONS

Subsurface conditions encountered in the borings are shown on Figure 2 in the Appendix. Descriptions of the soils encountered in the borings are accompanied by the Unified Soil Classification symbol (SP, SM, etc.) based on visual examination and limited laboratory testing. Stratification boundaries between soil types should be considered approximate as the actual transition between soil types may be gradual.

In general, the borings encountered a surficial layer of grayish-brown to brown fine sand, trace roots (topsoil) (SP) about 6 to 12 inches thick. Below this surficial layer, a layer of light gray to orangish-brown fine sand to slightly silty fine sand (SP) (SP-SM) was encountered to the boring termination depths ranging from 15 to 40 feet. Two exceptions to this generalized subsurface profile occurred in Borings TB-1 and TB-2. Boring TB-1 encountered a layer of dark orangish-brown silty

to clayey fine sand (SM-SC) (Stratum 3) approximately 6 to 8.5 feet below the existing ground surface. Boring TB-2 encountered the Stratum 3 material about 7 feet below the existing ground surface to the boring termination depth of 20 feet.

The Standard Penetration Resistances (N), which are determined from the number of hammer blows it takes to drive the split spoon sampler 12 inches, ranged from 2 to 28 in the SPT borings. These resistances indicate the soils range from very loose to medium dense in relative density. A very loose density refers to blow counts in the range of 1 through 3, a loose density refers to blow counts in the range of 4 through 10 and a medium density refers to blow counts in the range of 10 through 30. Soils were generally loose in the upper few feet, becoming more dense with depth.

Groundwater was not encountered in any of the borings performed for this project. Groundwater levels will fluctuate with the amount of local rainfall and with site development. Because groundwater levels were not encountered in the borings, estimated seasonal high groundwater levels for the site could not be determined; however, groundwater is expected to remain at depths which will not have an impact on the project. Based on the USGS Quadrangle Map, several nearby lakes indicated groundwater elevations at about +84 feet NGVD. Also, based on the September 1995 St. Johns River Water Management District Potentiometric Map of the Upper Floridan Aquifer, the artesian level for this project area is at about +94 feet NGVD. However, changes in drainage characteristics due to site development or the installation and operation of irrigation systems may cause significant deviations from these anticipated groundwater levels.

LABORATORY TESTING

Two (2) -200 grain size analysis tests and one (1) Atterberg Limits Test was performed on soil samples obtained during our subsurface exploration. These tests were performed to assist in the visual classification of the soil for the project area. Test results are shown on Figure 2 in the Appendix. The test procedures were performed in accordance with the appropriate American Society for Testing and Materials (ASTM) procedures.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the project characteristics previously described, the data obtained in our field exploration and our experience with similar subsurface conditions and construction types. If final development locations or grades are significantly different from those previously described, or if subsurface conditions different from those disclosed by the borings are encountered during construction, we should be notified immediately so that we might review the following recommendations in light of such changes.

<u>General Site Preparation</u>: The initial step in routine site preparation should be the complete removal of any highly organic topsoil, trees, major root systems and other deleterious materials from the

\//Nodarse Associates.Inc.

construction area. Based on the boring results, maximum stripping thicknesses are expected to be about 6 inches at this site. Because much of the so-called "topsoil" is very sandy and vegetation in some areas may be sparse, in some instances discing of the remaining roots and vegetation may be acceptable. This would have to be evaluated after inspection of the initial clearing and grubbing results.

Areas to receive fill should be proofrolled/compacted until the soil at a depth of 12 inches below the compaction surface has attained a minimum of 95% of the soil's modified Proctor maximum dry density as determined by ASTM Specification D-1557. Monitoring of the compaction operations and in-place density tests should be performed by an experienced geotechnical engineering technician working under the direction of a registered geotechnical engineer to verify the required degree of compaction.

After the site has been proofrolled and accepted by the geotechnical engineer, fill required to bring the site to final grade may be placed and properly compacted. All fill should be inorganic, nonplastic, granular soil (clean sands). On-site materials are suitable. The fill should be placed in level lifts not to exceed 12 inches loose thickness if the compactor recommended above to proofroll the site is also used to compact the fill. The fill should be compacted to a minimum of 95% of the soil's modified Proctor maximum dry density as determined by ASTM Specification D-1557. Inplace density tests should be performed on each lift by an experienced engineering technician working under the direction of a registered geotechnical engineer to verify that the recommended degree of compaction has been achieved.

Stormwater Management Facility Recommendations: As previously mentioned, Borings AB-1 and TB-1 performed in the proposed pond area typically encountered a surficial layer of fine sand, trace roots (SP), fine sand to slightly silty fine sand (SP)(SP-SM) to the boring termination depths of 30 and 40 feet. Boring TB-1 also encountered a layer of silty to clayey fine sand (SM-SC) approximately 6 to 8.5 feet below the existing ground surface.

Based on the great depth to groundwater, a dry-bottom pond should be used. Results of a laboratory permeability test on the clean sand of **Stratum 2** indicates a coefficient of vertical permeability of 33 feet per day. Experience in similar soil types indicates that horizontal permeability is typically in the range of 1.5 to 2.0 times the vertical permeability. However, we recommend limiting the horizontal permeability to 40 feet per day for design. We would be pleased to assist you with pond recovery analyses upon request.

Suitability of soils encountered in the borings (AB-1 and TB-1) performed in the proposed pond area are as follows:

Stratum 1:

Heavily root-laden topsoil material should be properly removed from the site. It should not be used as structural fill material.

Nodarse Associates.Inc.

Stratum 2:

This slightly silty to fine sand soil is considered suitable for unrestricted use as a structural fill material. Some wetting may be required to facilitate compaction.

Stratum 3: The silty to clayey fine sand soils are not generally desirable for structural fill. However, this material can be used if placed in thin lifts and moisture contents are controlled near optimum. This material should not be used in the upper 2 feet of fill below finished grades. We recommend that this material be overexcavated in the pond area and replaced with the clean sand of Stratum 2 to optimize pond recovery.

It is our opinion that the soil and groundwater conditions in the pond are suitable for a dry-bottom pond. Based on a review of pond design details, it is our opinion that soils are sufficiently permeable and that operation of the pond should not affect the existing slope. A line from the top bank of the pond to the bottom of the existing borrow pit yields an equivalent slope of 2.5H:1V. Overexcavation of any clayey sands below the pond bottom should be performed to minimize the chance of lateral seepage of perched water on the clayey sands.

Of more concern is erosion of the borrow pit slope unrelated to the operation of the pond. The existing 1H:1V borrow pit slope is steeper than the long term angle of repose that this soil type will normally allow. It is likely maintained in this steep condition by existing vegetation. Erosion of the slope back is more likely to affect the pond than the pond affecting the slope. We recommend that care be taken to direct overflow away from the borrow pit slope.

<u>Pavement:</u> Due to the great depth of groundwater, the conditions on the site are suitable for conventional or semi-flexible pavement constructed to minimum Lake County Specifications. Either a soil-cement or a limerock base may be used with the choice based on overall economy. The limerock should be provided with a stabilized subbase meeting Lake County Specifications. This stabilized subbase is optional for soil-cement. Subgrade, base and asphaltic concrete construction should be according to current Lake County Specifications.

<u>Cut and Fill Slopes</u>: Considerable cut and fill is expected on the site. It is our opinion that cut or fill slopes of 4 horizontal to 1 vertical (4H:1V) can be used on this site without restriction. Steeper slopes should be reviewed by the geotechnical engineer once preliminary plans are available.

<u>Construction Quality Control:</u> As noted previously, the site should be suitable for the proposed development and construction. This construction can be accomplished using conventional site preparation techniques. However, careful construction monitoring and testing is recommended to verify that these procedures are followed and result in a well-constructed project. Careful construction monitoring and testing can help avoid construction delays, cost overruns and

unnecessary removal of suitable materials. N&A has a well-qualified staff of certified Engineering Technicians and Engineers who have performed similar services on numerous projects. We would be pleased to provide you with a proposal to provide these services during construction of this project.

CLOSURE

N&A appreciates the opportunity to be of service to you on this project. If you should have any questions concerning the contents of this report, or if we may be of further assistance, please do not hesitate to contact us.

Very truly yours,

NODARSE & ASSOCIATES, INC.

Anne Marie Arnold, E.I. Project Engineer

9-24-97

Jay W / Casper, P.E. Manager, Geotechnical Services Fl Registration No.36330

cc: Mr. Jim Branch, P.E. Conklin Porter and Holmes, Inc.

W97-238.REP:AMA13/jc

APPENDIX

6.

HILLS OF CLERMONT, PHASES 1-3

Stormwater Calculations & Report

CPH Job No. G6778 October 3, 1997

OCT 09 1997 40-069:0381 A-ERP RECO ORLANDO SJR WMD

Conklin, Porter & Holmes-Engineers, Inc. 101 N. Woodland Boulevard, Suite 100 DeLand, Florida 32720

•••

ι.

, ,

ι.

、 -

, ,

. .

.

. ..

• ...

. .

× ...

. .

à.

. .

ъ. . н

, ,

•••

•••

. .

Phone: (904) 736-4142 Fax: (904) 736-8412

HILLS OF CLERMONT, PHASES 1-3

.

were sold of the second second

Stormwater Calculations & Report

CPH Job No. G6778 October 3, 1997

TABLE OF CONTENTS

	<u>ITEM</u>	<u>AGE</u>
1.	Summary and Conclusions	. 1-4
2.	Site & Project Description	5
3.	Analysis Methodology & Resultsa.Pre-development Data & Calculationsb.Post-development Data & Calculations	. 5-6 10-16 17-53
4.	Pollution Abatement & Recovery	55
5.	Environmental	60
6.	Storm Sewer System	61

Figures & Tables

.

:

. .

. ...

, .

. .

. .

. .

. .

• •

• •

. .

1.1

•••

. .

1.1

•••

•

. .

.

. .

....

, .

. .

h . . .

, .

• • • •

Site & Results Summary	. 4
USGS / Vicinity Map	. 7
Depiction of Works	. 8
USDA/SCS Soils Map	. 9
Pre-development Areas and Curve Number	10
Pre-development Time of Concentration	11
Pre-development Nodal Diagram	12
Pre-development Input / Output Data	16
Typical House and Road Parcel	17
Post-development Areas and CN's	19
Post-development Time of Concentration	20
Post-development Nodal Diagram	21
Post-development Input Data	37

ITEM

ς.

. .

. .

. .

. .

. .

ι.,

. .

ς.,

, .

. .

, .

PAGE

.

1

Post-development 10 Yr/2 Hour Storm Results	. 38
Post-development 25 Yr/24 Hour Storm Results	. 39
Post-development 50 Yr/24 Hour Storm Results 40	0-46
Post-development 25 Yr/96 Hour Storm Results 4'	7-53
Discharge Velocity Calculations	. 54
Pollution Abatement Volume Calculation	. 56
Retention Pond Stage / Area / Storage Table	. 57
Pond Recovery Calculations (Modret) 58	8-59
Hydraflow Calculations	-119

Attachments and Enclosures

.

•	Aerial Photograph with Site Overlay	Map Pocket
•	Pre-development Drainage Basin Map	Map Pocket
•	Post-development Drainage Basin Map	Map Pocket
•	Site Final Engineering Plans	(Separately Bound)
•	SJRWMD Individual ERP Permit Application	(Separately Bound)
•	Geotechnical Report	(Separately Bound)
•	Environmental Assessment	(Separately Bound)

STORMWATER CALCULATIONS AND REPORT

Hills of Clermont, Phases 1, 2 & 3 CPH Job No. G6778

I. <u>Summary and Conclusions</u>

ι.

. .

. .

L ...

. .

This report presents site specific data, stormwater management system data, and results of stormwater analyses for the proposed Phases 1, 2 & 3 of Hills of Clermont on Hancock Road in South Lake County.

The total drainage basin analyzed is 61.19 acres, of which 58.7 acres is onsite (consisting of three development phases) and 2.49 acres is from offsite areas. The three development phases are to be developed into single family housing with an infrastructure road system, stormwater collection system, and retention pond. The stormwater management system has been designed in accordance with requirements of both the City of Clermont and the St. Johns River Water Management District (SJRWMD). This report is intended to supplement a SJRWMD ERP permit application for the development. This report presents site specific data, stormwater management system data, and results of stormwater analysis for Hills of Clermont on Hancock Road in South Lake County. The commercially zoned parcels to the North of Phases 1-3 will be permitted separately from the residential portion. The areas from the commercial parcels which flow into the residential site have been included as offsite undeveloped areas in both our pre- and post-developed condition analysis.

In the process of constructing Phases 1-3, the excess dirt is to be taken to an offsite stockpile location to the West of Hancock Road, which is also owned by the Greater Construction Corporation. The stockpile location to be used is shown on the Aerial Photograph located in the map pocket. There is no construction proposed within the area of the offsite stockpile. Silt fence will be placed around the entire offsite area being used for stockpiling, with double

silt fence placed at the lower end of the site. The dirt will be placed in 12" lifts, and be compacted to a minimum density of 98% of the AASHTO T-180 maximum density.

. .

. .

• •

. .

. .

k ...

. .

. .

. .

Generally, the runoff from the development of Phases 1-3 of Hills of Clermont is to be collected in a retention pond, with discharge from the retention pond into a shallow onsite spreader swale. From the spreader swale, the discharge thence flows offsite to the South. The swale was provided to reduce concentration of flow at any one point and therefore reduce the potential for erosion. Because the site is part of a land-locked system the stormwater analysis includes the 25 year / 96 hour storm event.

The total onsite storage capacity includes both our large retention pond (capacity 15.36 ac-ft to its overflow elevation) and the spreader swale (approximately 0.123 ac-ft capacity.) For WQV purposes we considered only the pond volume and it was more than sufficient.

Four storm events were analyzed as part of this report. The 25-year frequency, 24-hour and 25-year frequency, 96-hour events (8.6" and 12.33" respectively) were analyzed per SJRWMD requirements. The 10-year frequency, 2-hour and 50-year frequency, 24-hour events (3.9" and 9.6" respectively) were analyzed according to the City of Clermont requirements. Since the percent impervious for the site is less than 50%, no analysis of the mean annual pre/post was made, in accordance with the provisions of 40C42.025(8). The attached table on page 4 summarizes the results for all four of the storm events. Postdevelopment runoff rates out of the basins are considerably less than the pre-development runoff rates. The site, which is part of a land-locked system, discharges via overland flow to the East. A 25-year frequency, 96-hour storm event for pre- and post-development conditions was analyzed to determine whether there was any increase in the runoff volume, offsite, due to the proposed development. This is required because the site is part of a landlocked basin. The size of the on-site retention pond was designed to hold the difference between pre- and post- development volumes below the overflow weir elevation, assuring that the volumetric discharge to the land-locked lake did not increase for the 25/96 event. The Summary Table on page 4 also shows the pre-post volumetric results for the 25/96 and 50/24 storm events.

Pollution abatement volumes (WQV) and retention pond recovery times were analyzed for the post-development condition. As can be seen in the Summary Table, the proposed retention pond provides more than the required pollution abatement volume, and recovers in less than 72 hours as required by the SJRWMD.

. .

. .

ι.

Nodarse & Associates, Inc. has performed the soil borings for the site. Two of the soil borings for the site were located in the pond area to determine the water tables, and the permeability rates which were used in the Modret drawdown calculations. Based on their soils exploration, they determined the horizontal hydraulic conductivity to be 40 feet per day. No water table was encountered in any of the borings for the site which went as deep as elevation 95. The proposed retention pond bottom elevation is 130.00, 35' above the bottom of the deepest borings, in which no water was encountered. The SJRWMD Potentiometric Map indicates the water level in the area to be at elevation 94.

ţ

SUMMARY OF RESULTS

A. <u>Pre/Post Rate Comparison</u>

Item	Pre-development	Post-development
10-Year Frequency / 2-Hour Duration	13.02 cfs	0.00 cfs
25-Year Frequency / 24-Hour Duration	75.17 cfs	6.80 cfs
50-Year Frequency / 24-Hour Duration	98.71 cfs	13.21 cfs
25-Year Frequency / 96-Hour Duration	151.97 cfs	60.88 cfs

B. <u>Pre/Post Volumetric Discharge Comparison</u>

Item	Pre-development	Post-development
50-Year Frequency / 24-Hour Duration	15.40 ac-ft	7.16 ac-ft
25-Year Frequency / 96-Hour Duration	25.07 ac-ft	18.07 ac-ft

Notes:

The Pre-development runoff volume is the summation of basin runoff volumes as listed on the AdICPR Hydrology Output. The Post-development runoff volume is the summation of basin runoff volumes as listed on the AdICPR Hydrology Output, minus the volume provided in the retention pond below the weir (15.36 ac-ft)

C. <u>Required Water Quality Volumes and Recovery Times</u>

Item	WQV Required	WQV Provided	Recovery Time
Retention Pond	5.10 ac-ft	15.36 ac-ft	< 24 Hours

4

.

•• • • • •

II. <u>Site and Project Description</u>

Phases 1-3 of Hills of Clermont consist of approximately 58.7 acres of land. The site is located on the East side of Hancock Road, South of Clermont, in South Lake County. A vicinity map is included on page 7. Additionally 2.49 acres of offsite lands drain into the land to be developed and have been included in the analysis. This gives a total drainage basin for analysis purposes of 61.19 ac.

It is proposed that the 58.7 acres be developed into 180 single family homes, with a stormwater collection and retention pond system. A depiction of proposed works is attached on page 8. Final Engineering Plans for the proposed roadways and stormwater collection and retention pond system are included with this submittal.

This project site is characterized by Candler soils with slopes ranging from 0 to 12 percent slopes (SCS symbols AtB and AtD) which are in hydrological group "A". A copy of the SCS Soils Map with the site overlaid on it is shown on page 9. The drainage for the site currently travels via overland flow from the northwest corner of the site in a general southeasterly direction. In the proposed development the runoff from the site will be handled by a dry retention pond which is located in the southeast corner of the development. The retention pond will then discharge to the southeast, as in the pre condition.

Attached to this submittal is a SJRWMD aerial photograph of the site with Phases 1-3 of Hills of Clermont overlaid thereon. Pre- and post-development basin maps, which further depict the proposed development are also attached.

III. Analysis, Methodology, and Results

The pre-development parcels, as shown on the pre-development drainage basin map attached, have been subdivided on the basis of topography, their acreages, cover, curve numbers, and their times of concentration have been estimated. The tables on pages 10-11 show the results of the site specific determinations for the pre-development condition. The nodal diagram for the pre-development condition is shown on page 12. The pre-development site data was

analyzed for its runoff using the Santa Barbara Urban Hydrograph for two different storm events; the 8.6" of rain, 25/24 event, and the 12.33" of rain, 25/96 event. Runoff hydrographs were generated using the Advanced ICPR2 computer modeling methodology. Input data used for the modeling the pre-development case is attached as pages 13-16.

In the post-development condition, the site was subdivided into the small runoff basins as shown on the attached post-development drainage basin map. The overall basin was subdivided into the small basins, both for the purpose of the stormwater touring for pond calculations, and also for the purpose of stormwater routing for the individual stormwater pipe collection system analysis. The proposed development consists of single family homes. The percent impervious, and its subdivision into Directly Connected Impervious Area (DCIA), and Non-Directly Connected Impervious Area, estimated for these calculations, is as shown on the attached "Typical House and Road Parcel" drawing on page 17. The post-development nodal diagram, and the calculation of the post-development areas, their curve number determination, and the post-development time of concentration for each of the runoff basins area shown on pages 18-21. The AdICPR Post-development Input Data is included as pages 22-37. Results of the post-development routings for the 10/2, 25/24, 50/24 and 25/96 events are included on pages 38-53.

. . .

. .

. .

• 3

The time of concentration for each one of the developed condition basins (and the predevelopment condition basins) was analyzed using a determination of the path for the time of concentration and a division of that path into the first 300-feet portion, the remaining distance to the storm inlet, and the travel through the storm sewer piping. The time of travel for the first 300-feet portion was determined using the overland flow formula from SCS TR55; the remaining distance to the inlet was calculated using gutter flow; the time of travel in the storm piping was determined based on an average flow velocity of 7 feet per second in the pipes.

On page 54 we have provided calculations of the velocity of flow as it discharges from the pond, and also as it leaves the spreader swale. These calculations show that all flow leaving the swale is moving at a non-erosive velocity.

AREA AND SCS METHOD "CN" EAST KNAPP PARCEL, PHASES 1-3 CPH JOB NO. G6778 DATE: 8/20/97

PRE-DEVELOPED CONDITION

MPERVIOUS CN = 95 PERVIOUS CN = 48

BASIN No. TOTAL	AREA AREA AREA AREA PERCENT "CN" FOR NDCI/	A
AREA	DCIA NDCIA IMPERVIOUS PERVIOUS DCIA AND PERVIOUS	
	<u>AC) (AC) (AC) (ASA%) AREA</u>	

Basin A	43.31	0.00	0.00	0.00	43.31	0.00%	48
Basin B	13.38	0.00	0.00	0.00	13.38	0.00%	48
Basin C	4.50	0.00	0.00	0.00	4.50	0.00%	48

NOTES:

1. DCIA = DIRECTLY CONNECTED IMPERVIOUS AREA, i.e. IMPERVIOUS AREA DIRECTLY CONNECTED TO THE STORM DRAINAGE SYSTEM WITHOUT FLOW OVER ANY PERVIOUS AREA.

2. NDCIA = IMPERVIOUS AREA NOT DIRECTLY CONNECTED TO THE STORM SYSTEM, BUT WHICH DISCHARGES OVER A PERVIOUS AREA PRIOR TO ENTRY INTO THE STORM DRAINAGE SYSTEM.

3. AREA OF IMPERVIOUS = DCIA + NDCIA.

4. PERCENT DCIA COMPUTED BY DIVIDING AREA DCIA BY THE TOTAL BASIN AREA.

5. SCS "CN" FOR PERVIOUS AND NDCIA COMPUTED BY DIVIDING THE SUM OF THE PRODUCTS OF THE PERVIOUS AREA TIMES IT'S CN AND THE NDCIA AREA TIMES IT'S CN, BY THE SUM OF THE SAME TWO AREAS.

10

TIME OF CONCENTRATION - PRE DEVELOPED CONDITION EAST KNAPP PARCEL, PHASES 1-3 CPH JOB # G6778 8/20/97

	00000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·		
	CONTRACTOR 22 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2			
	Sector Contraction and the sector of the sec		5 c 1 / 1 / ~ ? is \$55555555555555555555555555555555555	
₩ ₩ ₩Ĵŵ(₩Ĵĺk ₩88 <i>8 8 x</i> %ú88 x 8	***************************************	\$\$ \$\$ \$\$\$ \$ C \$ \$\$\$ \$\$\$~6 2 \$\$\$\$ \$\$\$ \$\$ \$ \$ \$\$\$	\$	
		08 00		
No I (fft)		TAX I TAX		
		WARDE FOR WHEN HE FY WAY TOO OF CHEFT IN SA		

Basin A 2280 300	0.060 12.42	0	0.000 0.00	1980	0.027 12.42	0	0.000	0 00 24 8
Basin B 1172 300	0.076 11.28	0	0.00 0.00	872	0.039 4.57	0	0.000	0.00 15.0
Basin C 718 300	0.055 12.84	0	0.000 0.00	418	0.027 2.64	0	0.000	0.00 15.5

NOTES:

. .

•••

ς.,

. .

ъ. "

. .

· ·

a) L1-G, S1-G & T1-G ARE LENGTH, S TIME OF TRAVEL FOR RUNOFF OVEF USING SHEET FLOW FORMULAE FRO b) L1-C, S1-C & T1-C ARE LENGTH, SL	LOPE AND COMPUTED GRASS IN 1ST 300 FT, M SCS TR55.	T1-C&G = {0.007(nL)^0.8}/ {(P)^0.5(s)^0.4} Where: T = Time (hrs)
	PAVED IN 1ST 300 FT,	L = Length (ft)
a) LO O & TO O ADE LEVIOTULAE FRO	M SCS 1 R55.	s = slope (ft/ft)
c) L2-G & 12-G ARE LENGTH AND CO	MPUTED TIME OF TRAVE	P = 2vr - 24hr Rainfall (in)
FOR RUNOFF OVER GRASS IN REMAI	NING PATH LENGTH WHI	ERE n = Manning's roughness
V=16.1345*(S)^.5 (PER TR-55 PAGE F-1)	
d) L2-C & T2-C ARE LENGTH AND COM	/ MPUTED TIME OF TRAVE	coenicient
FOR RUNOFF OVER PAVED IN REMAIL	NING PATH LENGTH WHA	- Assumptions:
V=20.3282*(S)^.5 (PER TR-55 PAGE F-1)	
e) TRAVEL TIME (TH) IS THE SUM OF T		II = 0.011 for concrete
	IVIE FOR FIRST 300 FT P	LUS $n = 0.15$ for grass
TIME FOR REMAINING PATH OR 10 MI	NUTE MINIMUM PER FDO	DT. $P = 4.8$ in.

Conklin Deuter and Malmas	
Engineers, INC.	Temp. Sheet No
MAINSTREET CENTER SUITE 100 101 N. WOODLAND BOULEVARD	Calc. by
TEL 904-736-4142 FAX 904-736-B412 Job No. 676778	Checked by Date
SUBJECT Fre - Der Alodal Diag Div. of Work	Sheet No of
Nodal Diagram - Pre-Dev.	
(Bring A) (Bring) (B)	
(Dasin A) (Desinb) (Busin C)	
OFF-:tr	
Unsite	
•••	
• • •	
<i>、</i> 、	
· ·	
, ·	
、 .	
r .	
• •	
· ·	

. !

Pre Development - Hydrology Data

.

. .

					•••••••••••••••••
•	Basin Name:	BASIN-A	BASIN-B	BASIN-C	
•	Group Name:	BASE	BASE	BASE	
	Node Name:	OFFSITE	OFFSITE	OFFSITE	
•	Hydrograph Type:	SB	SB	SB	
•	Spec Time Inc (min):	5.00	5.00	5.00	
	Comp Time Inc (min):	5.00	5.00	5.00	
	Rainfall File:	FLKOD	FLMOD	FLNOD	•
•	Rainfall Amount (in):	3.90	3.90	3.90	
	Storm Duration (hr):	2.00	2.00	2.00	;
	Status:	ONSITE	ONSITE	ONSITE	
	Time of Conc. (min):	22.90	15.90	15.50	
	Lag Time (hr):	0.00	0.00	0.00	
	Area (acres):	43.31	13.38	4.50	
	Curve Number:	48.00	48.00	48.00	
	DCIA (%):	0.00	0.00	0.00	
	Time Max (hrs):	1.42	1,25	1.25	
	Flow Max (cfs):	8.79	3.16	1.07	
	Runoff Volume (in):	0.23	0.23	0.23	
	Runoff Volume (cf):	35874	11083	3727	

[3

Pre Development - Hydrology Data

. .

k ...

. .

, 4

*** . .. Basin Name: BASIN-A BASIN-B BASIN-C Group Name: . . BASE BASE BASE Node Name: OFFSITE OFFSITE OFFSITE • • • Hydrograph Type: SB SB SB . . 5.00 5.00 Spec Time Inc (min): 5.00 Comp Time Inc (min): 5.00 5.00 5.00 ь e Rainfall File: FLKOD FLHOD FLHOD . . Rainfall Amount (in): 8.60 8.60 8,60 Storm Duration (hr): 24.00 24.00 24.00 Status: ONSITE ONSITE ONSITE Time of Conc. (min): 22.90 15.90 15.50 . . Lag Time (hr): 0.00 0.00 0.00 . . Area (acres): 43.31 13.38 4.50 Curve Number: 48.00 48.00 48.00 DCIA (%): 0.00 0.00 0.00 . . Time Max (hrs): 12.00 12.00 12.00 , . Flow Hax (cfs): 50.15 18.67 6.35 Runoff Volume (in): 2.39 2.39 2.39 ι. Runoff Volume (cf): 376158 116209 39084

Pre Development - Hydrology Data

+++ Basin Nane: BASIN-A BASIN-B BASIN-C

				DHOIN U
,	Group Name:	BASE	BASE	BASE
	Node Name:	OFFSITE	OFFSITE	OFFSITE
	Hydrograph Type:	SB	SB	SB
•	Spec Time Inc (min):	5.00	5.00	5.00
	Comp Time Inc (min):	5.00	5.00	5.00
	Rainfall File:	FLKOD	FLMOD	FLNOD
•	Rainfall Amount (in):	9.60	9.60	9.60
	Storn Duration (hr):	34.00	24.00	24.00
•	Status:	ONSITE	ONSITE	ONSITE
	Time of Conc. (min):	22.90	15.90	15.50
	Lag Time (hr):	0.00	0.00	0.00
·	Area (acres):	43.31	13.38	4.50
	Curve Number:	48.00	48.00	48.00
•	DCIA (%):	0.00	0.00	0.00
·	mine Ken (to L	10.00		
	Time Hax (hrs):	12.00	12.00	12.00
,	Flow Max (cfs):	66.03	24.39	8.29
	Runoff Volume (in):	3.02	3.02	3.02
•	Runoff Volume (cf):	474742	146665	49327

. .

đ

15

Pre Development - Hydrology Data

. .

. .

. .

. .

ι.

. .

. . *** . . BASIN-A BASIN-B BASIN-C Basin Name: Group Name: Node Name: BASE BASE BASE . . OFFSITE OFFSITE OFFSITE SB ι. SB Hydrograph Type: SB . . 5.00 Spec Time Inc (min): 5.00 5.00 5.00 5.00 Comp Time Inc (min): 5.00 . . Rainfall File: SJRWHD96 SJRWND96 SJRWMD96 . . Rainfall Amount (in): 12.33 12.33 12.33 Storn Duration (hr): 96.00 96.00 96.00 **6**..... Status: ONSITE ONSITE ONSITE 22.90 Time of Conc. (min): 15.90 15.50 . . Lag Time (hr): 0.00 0.00 0.00 13.38 48.00 Area (acres): 43.31 4.50 ι. Curve Number: 48.00 48.00 . . DCIA (%): 0.00 0.00 0.00 ۰. ۲

 Time Hax (hrs):
 59.92

 Flow Hax (cfs):
 102.13

 Runoff Volume (in):
 4.92

 Runoff Volume (cf):
 772910

 $59.92 \\ 37.20$ 59.92 12.64 . . 4.92 4.92 . . 238780 80307

1

....

Conklin, Porter and Holmes Temp. Sheet No. _____ ENGINEERS, INC. MAINSTREET CENTER SUITE 100 101 N. WOODLAND BOULEVARD DELAND, FLORIDA 32720 Calc. by JRK Date _ Job No. <u>646778</u> TEL 904-736-4142 FAX 904-736-8412 Checked by _____ Date ___ SUBJECT East Knapp Parcer Div. of Work Sheet No. _____ of _ Typical House & Rood Parcel 75' NDCIA A House Pocl/Patio sidewalk on lot Sidewalk on R/W Pool/Patio 1000sf DCT.A ò Drivewou Pavement 1600 sf 32 Res. 50' HISIL 25' 16' - R/W 4'5/W 515 Lot Area Breakdown Total = 8250 sf 4941 sf Pervious = House = 16005 Driveway = 6175 Pool /Patio = 1000st Side Walk = 92.sf 17

AREA AND SCS METHOD "CN" EAST KNAPP PARCEL, PHASES 1-3 CPH JOB NO. G6778 DATE: 8/20/97

POST-DEVELOPED CONDITION

39

IMPERVIOUS CN # 95 PERVIOUS CN

.

. .

. .

· ·

. .

, i

ι,

. .

• •

. .

• •

• •

۰.

. .

. .

. .

•••

, , . .

κ.

BASIN TOTAL	AREA AREA	AREA	AREA PERCENT	"CN" FOR NDCIA
No. AREA	DCIA NDCIA	IMPERVIOUS PE	RVIOUS DCIA	AND PERVIOUS
(AC)	(AC) (AC)	(AC)	(AC) (AS A %)	AREA

Pond	10.62	0.00	1.33	1.33	9.29	0.0%	46
S-2	0.34	0.15	0.05	0.20	0.14	44.8%	53
S-3	1.16	0.11	0.19	0.31	0.86	9.7%	49
S-4	0.51	0.22	0.05	0.27	0.24	42.5%	49
S-5	1.44	<u>1.44 0.14 0.39</u>		0.53	0.91	9.7%	56
S-5B	1.18	0.11	0.32	0.44	0.74	9.6%	56
S-6	1.67	0.23	0.40	0.63	1.04	14.1%	· 54
S-7	0.83	0.40	0.09	0.49	0.34	48.2%	50
S-8	1.39	0.15	0.36	0.51	0.88	10.8%	55
S-8A	1.21	0.14	0.39	0.52	0.69	11.2%	59
S-9	0.72	0.12	0.27	0.40	0.33	17.1%	65
S-10	0.44	0.16	0.06	0.22	0.22	36.6%	51
S-11	1.44	0.17	0.40	0.57	0.87	11.5%	57
S-11A	0.76	0.08	0.23	0.31	0.45	10.8%	58
S-11B	1.00	0.10	0.29	0.39	0.61	10.2%	57
<u>S-1</u> 2	0.72	0.11	0.21	0.32	0.40	15.2%	58
S-13	0.72	0.13	0.17	0.30	0.41	17.9%	56
_ S-14	0.85	0.08	0.20	0.28	0.57	9.8%	54
S-14A	1.30	0.14	0.39	0.53	0.77	10.9%	58
S-15	1.36	0.12	0.31	0.44	0.92	9.0%	53
<u>S-15A</u>	0.90	0.12	0.33	0.45	0.45	13.6%	63
S-16	0.34	0.11	0.05	0.16	0.18	31.8%	52
S-17	0.43	0.19	0.06	0.24	0.19	43.5%	52
<u>S-17A</u>	1.33	0.20	0.27	0.48	0.85	15.3%	53
S-18	1.73	0.22	0.41	0.63	1.10	12.7%	54
<u>S-20</u>	0.41	0.18	0.05	0.24	0.17	44.8%	52
<u>S-21</u>	1.32	0.16	0.39	0.55	0.77	11.9%	58
<u>S-21A</u>	0.98	0.14	0.21	0.35	0.63	14.4%	53
S-21B	1.24	0.15	0.35	0.50	0.74	11.9%	57
<u>S-23</u>	1.03	0.20	0.16	0.36	0.67	19.5%	50
<u>S-25</u>	0.94	0.12	0.23	0.35	0.58	13.3%	55
_S-28	0.63	0.27	0.06	0.32	0.30	42.8%	48
<u>S-29</u>	1.00	0.14	0.27	0.42	0.58	14.3%	57
<u>S-30</u>	0.98	0.10	0.26	0.37	0.61	10.4%	56
S-30A	0.89	0.10	0.26	0.36	0.53	10.8%	57
S-30B	1.07	0.12	0.31	0.43	0.64	11.1%	57
<u>S-31</u>	0.26	0.09	0.01	0.10	0.15	36.0%	43
<u>S-32</u>	0.43	0.21	0.05	0.26	0.17	49.1%	52
_S-33	2.09	0.29	0.53	0.81	1.28	13.7%	55
S-33A	1.08	0.12	0.30	0.42	0.66	11.3%	56
S-34	0.99	0.22	0.24	0.46	0.53	22.2%	56
S-35	0.16	0.08	0.02	0.09	0.07	45.8%	51
S-36	1.58	0.22	0.46	0.68	0.90	14.2%	58
S-36B	1.04	0.15	0.26	0.41	0.63	14.4%	55

18

S-37	0.22	0.09	0.03	0.12	0.11	40.1%	51
S-38	0.85	0.10	0.25	0.34	0.51	11.3%	57
S-39	0.71	0.20	0.12	0.32	0.39	27.8%	52
S-40	0.28	0.05	0.07	0.12	0.16	17.1%	57
S-41	0.43	0.12	0.09	0.21	0.22	28.1%	55
S-42	0.38	0.10	0.04	0.14	0.24	27.4%	47
S-43	1.26	0.19	0.24	0.44	0.83	15.4%	52
S-44	2.29	0.16	0.26	0.42	1.87	7.1%	46
S-44A	1.53	0.09	0.14	0.23	1.30	6.0%	44
S-45	0.73	0.17	0.18	0.35	0.38	23.8%	57
Total	61.19	8.06	13.08	21.14	40.05	13.2%	53

NOTES:

1. DCIA = DIRECTLY CONNECTED IMPERVIOUS AREA, i.e. IMPERVIOUS AREA DIRECTLY CONNECTED TO THE STORM DRAINAGE SYSTEM WITHOUT FLOW OVER ANY PERVIOUS AREA.

2. NDCIA = IMPERVIOUS AREA NOT DIRECTLY CONNECTED TO THE STORM SYSTEM, BUT WHICH DISCHARGES OVER A PERVIOUS AREA PRIOR TO ENTRY INTO THE STORM DRAINAGE SYSTEM.

3. AREA OF IMPERVIOUS = DCIA + NDCIA.

4. PERCENT DCIA COMPUTED BY DIVIDING AREA DCIA BY THE TOTAL BASIN AREA.

5. SCS "CN" FOR PERVIOUS AND NDCIA COMPUTED BY DIVIDING THE SUM OF THE PRODUCTS OF THE PERVIOUS AREA TIMES IT'S CN AND THE NDCIA AREA TIMES IT'S CN, BY THE SUM OF THE SAME TWO AREAS.

TIME OF CONCENTRATION - POST DEVELOPED CONDITION EAST KNAPP PARCEL, PHASES 1-3 CPH JOB # G6778 8/20/97

				FIRST	300. O	FPATH	1				REM	AINING	PATH		ELOW IN S	TORM PIPE	
•	BASIN	PATH	L1-C	i 51-G	T1-G	L1-C	81-C	T1-C	L.2-G	i \$2-G	T2-G	1.2.0	: S2-C	T2-C	LENGTH	T2-C	TIME
	No.	L (ft)	(ft)	(ft/ft)	(min)	(ft)	(11/11)	(min	(ft)		(min)	(ft)		(min)	(ft)	(min)	Tt (min)
· .							_	_									
	Pond	365	300	0.078	11.21	0	0.000	0.00	65	0.081	0.24	0	0.000	0.00	0	0.00	11.4
•	<u>S-2</u>	480	12	0.060	0.95	288	0.017	2.48	180	0.038	0.95	0	0.000	0.00	206	0.49	10.0
	S-3	385	240	0.038	12.44	60	0.014	0.76	8 0	0.000	0.00	85	0.014	0.59	254	0.60	14.4
•	S-4	462	12	0.016	1.59	288	0.018	2.38	0 O	0.000	0.00	162	0.018	0.98	525	1.25	10.0
	S-5	440	235	0.055	10.57	65	0.018	0.73	0	0.000	0.00	140	0.018	0.86	603	1 44	13.6
•	S-5B	405	240	0.049	11.30	60	0.018	0,69	0	0.000	0.00	105	0.018	0.64	818	1 95	14.6
	S-6	570	130	0.014	11.29	170	0.024	1.41	0	0.000	0.00	270	0.024	1 43	684	1.63	15.9
•	S-7	472	12	0.019	1.48	288	0.024	2.14	0	0.000	0.00	172	0.024	0.91	887	2 11	10.0
	S-8	455	230	0.044	11.36	70	0.027	0.66	Ō	0.000	0.00	155	0.027	0.77	899	230	15.1
•	S-8A	415	255	0.047	12.02	45	0.018	0.54	0	0.000	0.00	115	0.018	0.70	1203	2.86	16.1
	S-9	425	125	0.014	ារារារា	175	0.018	1.62	0	0.000	0.00	125	0.018	0.77	1132	2.00	16.2
<u>۱</u>	S-10	652	12	0.023	1.38	288	0.025	2.12	0	0.000	0.00	352	0.025	1.83	1226	2.70	10.2
	S-11	· 495	190	0.023	12,64	110	0.042	0.79	0	0.000	0.00	195	0.042	0.78	1262	3.00	17.0
· [S-11A	385	255	0.032	14.02	45	0.009	0.72	0	0.000	0.00	85	0.000	0.73	1572	3.00	10.2
[S-11B	390	240	0.056	10.68	60	0.005	1.14	0	0.000	0.00	90	0.005	1 04	1707	4.06	19.2
' [S-12	350	130	0.005	17.18	175	0.032	1.28	ō	0.000	0.00	45	0.000	0.21	1445	3.44	00.1
[S-13	455	75	0.024	5.91	225	0.035	1.52	0	0.000	0.00	155	0.035	0.21	1526	3.44	
' [S-14	390	235	0.039	12.13	65	0.039	0.54	0	0.000	0.00	90	0.030	0.37	1564	3.03	16.0
[S-14A	465	240	0.037	12.60	60	0.032	0.54	0	0.000	0.00	165	0.000	0.76	1724		10.0
[S-15	385	185	0.029	11.28	115	0.030	0.94	0	0.000	0.00	85	0.002	0.10	1040	4.10	17.0
	S-15A	385	185	0.021	12.83	115	0.017	118	0	0.000	0.00	85	0.000	0.40	21549	4.04	17.3
ſ	S-16	422	12	0.034	1.19	288	0.023	2 19	0	0.000	0.00	122	0.017	0.55	1077		19.7
Ī	S-17	647	12	0.313	0.49	288	0.028	2 02	0	0.000	0.00	247	0.023	4 74	1977	4.71	10.0
1	S-17A	300	135	0.021	9.97	165	0.020	1 48		0.000	0.00	347	0.020	0.00	1700	3.96	10.0
	S-18	815	300	0.063	12.17	0	0.000	0.00	65	0.063	0.00	450	0.020	0.00	1946	4.07	15.5
	S-20	367	12	0.038	1.14	288	0.012	2.85	0	0.000	0.27	67	0.022	0.51	1040	4.40	<u>19.3</u>
	S-21	400	240	0.062	10.25	60	0.008	0.95	0	0.000	0.00	100	0.012	0.02	- 192	0.46	10.0
	S-21A	235	235	0.059	10.28	0	0.000	0.00	0	0.000	0.00		0.000	0.92	206	0.55	12.7
	S-21B	475	225	0.055	10.21	75	0.014	0.91	0	0.000	0.00	175	0.000	1.01	300		11.0
	S-23	400	190	0.082	7.59	110	0.023	101		0.000	0.00	100	0.014	0.54		0.93	13.3
ŝ	S-25	380	140	0.082	5.94	160	0.043	1.06	0	0.000	0.00	80	0.023	0.54	- 201	0.48	10.0
k	S-28	632	12	0.016	1.60	288	0.011	2 93	0	0.000	0.00	332	0.043	0.32		0.74	10.0
	S-29	440	140	0.052	7.15	160	0.055	0.96		0.000	0.00	140	0.011	2.00	551	1.31	10.0
	S-30	415	240	0.047	11.45	60	0.008	0.00	ان	0.000	0.00	140	0.055	0.49	579	1.38	10.0
1	S-30A	395	240	0.047	11.45	60	0.009	0.00		0.000	0.00	05	0.008	1.05	632	1.50	15.0
	S-30B	450	240	0.048	11.35	60	0.007	1.00		0.000	0.00	95	0.009	0.82	808	1.92	15.1
	S-31	110	110	0.072	5.17		0.000	0.00		0.000	0.00	130	0.007	1.4/	9/3	2.32	16.1
2	S-32	402	12	0.013	1.74	288	0.012	2.83		0.000	0.00	100	0.000	0.00	858	2.04	10.0
ि	S-33	430	250	0.056	11.03	50	0.016	0.62	-0-	0.000	0.00	102	0.012	0.76	1068	2.54	10.0
1	S-33A	450	250	0.045	12.04	50	0.010	0.75	0	0.000	0.00	150	0.016	0.84	<u>1119</u>	2.66	15.2
	S-34	400	140	0.073	6.26	160	0.052	0.08		0.000	0.00	100	0.010	1.23	1293	3.08	17.1
1	S-35	237	12	0.022	1 41	225	0.050	1 22		0.000	0.00	100	0.052	0.36	950	2.26	10.0
2	S-36	590	140	0.051	7.20	160	0.020	1.23		0.000	0.00	0	0.059	0.00	1004	2.39	10.0
ş.;	S-36B	405	235	0.045	11 46	65	0.023	0.82		0.000	0.00	290	0.029	1.40	1244	2.96	12.8
3	S-37	312	12	0.028	1.28	288	0 047	1.64		0.000	0.00	105	0.013	0.76	1516	3.61	16.7
10 10	S-38	410	240	0.057	10.60	60	0.006	1.04		0.000	0.00	12	0.047	0.05	1594	3.80	10.0
8	S-39	405	130	0.015	11 07	170	0.027	1.00		0.000	0.00	110	0.006	1.16	1655	3.94	16.8
	S-40	270	130	0.030	8 30	140	0.027	1.04	<u> </u>	0.000	0.00	105	0.027	0.52	1396	3.32	16.3
	S-41	205	130	0.046	7 07	75	0.025	0.70	<u> </u>	0.000	0.00	0	0.011	0.00	1552	3.70	13.7
	S-42			0.000	0.00		0.025	0.72	<u> </u>	0.000	0.00	0	0.025	0.00	1699	4.05	11.8
	S-43	380	140	0.068	6.42	160	0.000	0.00		0.000	0.00	0	0.000	0.00	1849	4.40	10.0
	S-44	592	300	0.108	9.81		0.030	0.94	100	0.000	0.00	80	0.058	0.27	1909	4.55	12.2
90	S-44A	500	300	0.053	13.05	-	0.021	0.00	60	0.108	0.41	160	0.021	0.91	2039	4.85	16.0
20	S-45	193	60	0.016	5.81	130	0.024	1 1 2		0.053	0.27	140	0.016	0.91	2134	5.08	19.3
				5.510	0.01	100	0.024	1.13	<u> </u>	0.000	<u>୦.୦୦</u> ା	3	0.024	0.02	2071	4.93	11.9

20

· · · · ·

Conklin, Porter and Holmes Temp. Sheet No. _____ ENGINEERS, INC. MAINSTREET CENTER SUITE 100 101 N. WOODLAND BOULEVARD DELAND, FLORIDA 32720 TEL 904-736-4142 FAX 904-736-8412 JRK Calc. by ___ Date _ JOB NO. 616778 Checked by _____ Date ___ SUBJECT Post - Deu Modal Diag Div. of Work Sheet No. ____ ____ of _ Nodal Diagram - Post Dev. 5-20->5-21B 5-23 > 5-45 Pond Basin Pond (Storage) Discharge Spreader Swale Swale Offsite 21

Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development h -----Class: Node-----Name:OFFSITEBase Flow(cfs):0Init Stage(ft):135Group:BASELength(ft):0Warn Stage(ft):135.5 Group: BASE Comment: Time(hrs) Stage(ft) . . 0 135 135 24 -----Class: Node-----Base Flow(cfs): 0Init Stage(ft): 130Length(ft): 0Warn Stage(ft): 136.5 Name: POND Group: BASB Conment: Stage(ft) Area(ac) . . 130 2.367 131 2.522 . . 132 2.677 133 2.832 . . 134 2.987 135 3.142 135.5 3.22 136.5 3.375 137.5 3.53 -----Class: Node-----• • Name: SWALE Base Flow(cfs): 0 Init Stage(ft): 134 Group: BASE Length(ft): 590 Varn Stage(ft): 137.5 . . Connent: Stage(ft) Area(ac) . . 134 0.068 135 0.178 ۰. ۲ -----Class: Basin-----Basin: POND Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 10.62 Curve **‡**: 46 Concentration Time(min): 11.4 DCIA(x): 0Lag Time(hrs): 0

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1]

· ~.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [2] Copyright 1995, Streamline Technologies, Inc. . . Hills of Clermont - Post Development . . ------Class: Basin-----Basin: S-10 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.44 Curve ‡: 51 Concentration Time(min): 10 DCIA(%): 36.6 Lag Time(hrs): 0 -----Class: Basin-----. . Basin: S-11 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.44 Curve ‡: 57 Concentration Time(min): 17.2 DCIA(%): 11.5 Lag Tine(hrs): 0 -----Class: Basin-----Basin: S-11A Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.76 Curve ‡: 58 Concentration Time(min): 19.2 DCIA(%): 10.8 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-11B Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1 Curve **‡:** 57 Concentration Time(min): 16.9 DCIA(%): 10.2 Lag Time(hrs): 0

·····

23

ŧ

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [3] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . -----Class: Basin-----Basin: S-12 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD . . Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Tine Increment(min): 3 Area(ac): 0,72 Curve ‡: 58 Concentration Time(min): 22.1 . . DCIA(%): 15.2 Lag Time(hrs): 0 -----Class: Basin-----× .. Basin: S-13 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLHOD Storm Duration(hrs): 24 . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.72 Curve **‡:** 56 Concentration Time(min): 11.7 DCIA(%): 17.9 Lag Time(hrs): 0 -----Class: Basin----Basin: S-14 Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.85 Curve ‡: 54 Concentration Time(min): 16.8 DCIA(%): 9.8 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-14A Node: POND Status: On Site Type: Santa Barbara Group: BASE 6. · · · Rainfall File: FLMOD Storm Buration(hrs): 24 . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.3 s. . Curve **‡:** 58 Concentration Time(min): 18 DCIA(%): 10.9 Lag Time(hrs): 0

The second second second second second second second

. .

24

.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [4] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development ÷ . -----Class: Basin-----Basin: S-15 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.36 Curve **‡**: 53 Concentration Time(min): 17.3 . . DCIA(%): 9 Lag Time(hrs): 0 a -----Class: Basin----. . Node: POND Status: On Site Type: Santa Barbara Basin: S-15A Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 • • Rainfall Amount(in]: 8.6 Tine Increment(min): 3 Area(ac): 0.9 Curve #: 63 DCIA(%]: 13.6 Concentration Time(min): 19.7 DCIA(%): 13.6 Lag Time(hrs]: 0 -----Class: Basin-----Basin: S-16 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.34 Curve \$: 52 Concentration Time(min): 10 DCIA(%): 31.8 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-17 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLNOD Storm Duration(hrs): 24 . . Rainfall Ancunt(in): 8.6 Time Increment(min): 3 Area(ac): 0.43 • -4 Curve **#:** 52 Concentration Time(min): 10 DCIA(%): 43.5 Lag Time(hrs): 0

25

. .

. . .
Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [5] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . **.** . . -----Class: Basin-----. . Basin: S-17A Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 . . Time Increment(min): 3 Rainfall Amount(in): 8.6 Area(ac): 1.33 Curve **‡:** 53 Concentration Time(min): 15.5 DCIA(%): 15.3 Lag Time(hrs): 0 -----Class: Basin----ъ. Node: POND Status: On Site Type: Santa Barbara Basin: S-18 Group: BASE , . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Anount(in): 8.6 Time Increment(min): 3 . 1944 - 194 Area(ac): 1.73 • Curve ‡: 54 Concentration Time(min): 19.3 DCIA(%): 12.7 Lag Time(hrs): 0 ------Class: Basin-----Basin: S-2 Node: POND Status: On Site Type: Santa Barbara • . Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 . . Area(ac): 0.34 Curve ‡: 53 Concentration Time(min): 10 ι. DCIA(%): 44.8 Lag Time(hrs): 0 . . -----Class: Basin-----, , Status: On Site Type: Santa Barbara Basin: S-20 Node: POND Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.41 Curve ‡: 52 Concentration Time(min): 10 DCIA(%): 44.8 Lag Time(hrs): 0 !

.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [6] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development ------Class: Basin-----Node: POND Basin: S-21 Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 , , Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.32 Curve **‡**: 58 Concentration Time(min): 12.7 DCIA(%): 11.9 Lag Time(hrs): 0 -----Class: Basin----ь -Node: POND Status: On Site – Type: Santa Barbara Basin: S-21A Group: BASE . . Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 6. v d Area(ac): 0.98 Curve ‡: 53 Concentration Time(min): 11 DCIA(%): 14.4 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-21B Node: POND Status: On Site Type: Santa Barbara , , Group: BASE Rainfall File: FLNOD . . Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.24 Curve ‡: 57 Concentration Time(min): 133 DCIA(%): 11.9 Lag Tire(hrs): 0 -----Class: Basin-----Basin: S-23 Node: POND Status: On Site Type: Santa Barbara Group: BASE . .. Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.03 Curve **f**: 50 Concentration Time(min): 10 DCIA(%): 19.5 Lag Time(hrs): 0

27

7

ł

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [7] . . Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . -----Class: Basin-----. . Node: POND Status: On Site Type: Santa Barbara Basin: S-25 h. 1 Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Time Increment(min): 3 Rainfall Amount(in): 8.6 Area(ac): 0.94 Curve **‡:** 55 Concentration Time(min): 10 Lag Time(hrs): 0 DCIA(%): 13.3 -----Class: Basin-----Node: POND Basin: S-28 Status: On Site Type: Santa Barbara Group: BASE , , Rainfall File: FLMOD Storm Duration(hrs): 24 . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.63 . . Curve #: 48 Concentration Time(min): 10 DCIA(%): 42.8Lag Time(hrs): 0 -----Class: Basin-----Basin: S-29 Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLMOD . . Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1 Curve ‡: 57 Concentration Time(min): 10 DCIA(%): 14.3 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-3 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.16 . .. Curve ‡: 49 Concentration Time(min): 14.4 DCIA(%): 9.7 Lag Time(hrs): 0

28

to the statements of

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [8] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development ------Class: Basin-----. . Node: POND Status: On Site Type: Santa Barbara Basin: S-30 ι. Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Time Increment(min): 3 , . Rainfall Amount(in): 8.6 Area(ac): 0.98 Curve #: 56 Concentration Time(min): 15 DCIA(%): 10.4 Lag Time(hrs): 0 -----Class: Basin-----. . . Node: POND Basin: S-30A Status: On Site Type: Santa Barbara Group: BASE r + Rainfall File: FLNOD Storm Duration(hrs): 24 . . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.89 , . Curve \$: 57 Concentration Time(min): 15.1 DCIA(%): 10.8 Lag Time(hrs): 0 . . -----Class: Basin-----Basin: S-30B Node: POND Status: On Site Type: Santa Barbara . Group: BASE Rainfall File: FLHOD ς. Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 . . Area(ac): 1.07 Curve ‡: 57 Concentration Time(min): 16.1 . .. DCIA(%): 11.1 Lag Time(hrs): 0 s ... -----Class: Basin------Basin: S-31 Node: POND Status: On Site Type: Santa Barbara Group: BASE • • Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.26. . Curve ‡: 43 Concentration Time(min): 10 DCIA(%): 36 Lag Time(hrs): 0

. .

29

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [9] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development -----Class: Basin-----Basin: S-32 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Arealacl: 0.43 Curve **‡**: 52 Concentration Time(min): 10 DCIA(%): 49.1 Lag Time(hrs): 0 -----Class: Basin------...... Basin: S-33 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 2.09 Curve **‡**: 55 Concentration Time(min): 15.2 DCIA(%): 13.7 Lag Time(hrs): 0 ------Class: Basin-----Basin: S-33A Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.08 Curve **‡:** 56 Concentration Time(min): 17.1 DCIA(%): 11.3 Lag Time(hrs): 0 ------Class: Basin-----Basin: S-34 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLKOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.99 Curve **‡:** 56 Concentration Time(min): 10 DCIA(%): 22.2 Lag Time(hrs): 0

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [10] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . , . -----Class: Basin-----. . Node: POND Basin: S-35 Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 κ., Area(ac): 0.16 . . Curve **‡**: 51 Concentration Time(min): 10 DCIA(%): 45.8 Lag Time(hrs): 0 -----Class: Basin-----Node: POND Basin: S-36 Status: On Site Type: Santa Barbara . . Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 , , Area(ac): 1.58 Curve **‡**: 58 Concentration Time(min): 12.8 . . DCIA(%): 14.2 Lag Time(hrs): 0 -----Class: Basin----r - 4 Basin: S-36B Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLHOD Storm Duration(hrs): 24 . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.04 • • Curve ‡: 55 Concentration Time(min): 16.7 DCIA(%): 14.4 Lag Time(hrs): 0 , . -----Class: Basin-----Basin: S-37 Status: On Site Type: Santa Barbara Node: POND Group: BASE , . Rainfall File: FLHOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 . . . Area(ac): 0.22 Curve **‡**: 57 Concentration Time(min): 10 . . DCIA(%): 40.1 Lag Time{hrs}: 0 ι.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [11] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . • • . . ------Class: Basin-----. . Basin: S-38 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 • • Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.85 Curve **‡**: 52 Concentration Time(min): 16.8 DCIA(%): 11.3 Lag Time(hrs): 0 . . -----Class: Basih-----Node: POND Basin: S-39 Status: On Site Type: Santa Barbara r 1 Group: BASE . . Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.71 Curve **‡**: 57 Concentration Time(min): 16.3 . . DCIA(%): 27.8 Lag Time(hrs): 0 -----Class: Basin-----. . Node: POND Status: On Site Type: Santa Barbara Basin: S-4 Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 , **,** Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.51 × . Curve **‡**: 49 Concentration Time(min): 10 DCIA(%): 42.5 Lag Time(hrs): 0 . . -----Class: Basin------Basin: S-40 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 . . Area(ac): 0.28 Curve #: 55 Concentration Time(min): 13.7 DCIA(%): 17.1 Lag Time(hrs): 0

;

. .

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [12] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . , . -----Class: Basin-----. . Basin: S-41 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 . . Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.43Curve **‡**: 47 Concentration Time(min): 11.8 DCIA(%): 28.1 Lag Time(hrs): 0 . . ------Class: Basin------Basin: S-42 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.38 Curve **‡:** 52 Concentration Time(min): 10 DCIA(%): 27.4 Lag Time(hrs): 0 -----Class: Basin-----. . Basin: S-43 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 + × Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac]: 1.26 • • Curve **‡**: 44 Concentration Time(min): 12.2 DCIA(%): 15.4 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-44 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 3 Curve ‡: 49 Concentration Time(min): 16 DCIA(%): 5.4 Lag Time(hrs): 0

33

ŧ

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [13] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . -----Class: Basin-----Basin: S-44A Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.82Curve 1: 57 Concentration Time(min): 19.3 DCIA(%): 11.1 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-45 Node: POND Status: On Site Type: Santa Barbara Group: BASE Rainfall File: FLNOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.73 Curve ‡: 53 Concentration Time(min): 11.9 DCIA(%): 13.4 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-5 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLHOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.44 Curve **‡:** 56 Concentration Time(min): 13.6 DCIA(%): 9.7 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-5B Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.18 Curve **‡:** 56 Concentration Time(min): 14.6 DCIA(%): 9.6 Lag Time(hrs): 0

34

t

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [14] Copyright 1995, Streamline Technologies, Inc. Hills of Clermont - Post Development . . , . -----Class: Basin----a) 1 Node: POND Status: On Site Type: Santa Barbara Basin: S-6 Group: BASE , . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 ι. Area(ac): 1.67 Curve ‡: 54 Concentration Time(min): 15.8 DCIA(%): 14.1 Lag Time(hrs): 0 -----Class: Basin-----Node: POND Status: On Site Type: Santa Barbara Basin: S-7 . . Group: BASE Rainfall File: FLNOD . . Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.83 Curve **‡**: 50 Concentration Time(min): 10 DCIA(%): 48.2 Lag Time(hrs): 0 -----Class: Basin-----Basin: S-8 Node: POND Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 , , Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.39 • • Curve **‡**: 55 Concentration Time(min): 15.1 DCIA(%): 10.8 Lag Time(hrs): 0 . . ------Class: Basin------Basin: S-8A Node: POND Status: On Site Type: Santa Barbara . . Group: BASE Rainfall File: FLKOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 1.21 Curve ‡: 59 Concentration Time(min): 16.1 DCIA(%): 11.2 Lag Time(hrs): 0

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [15] Copyright 1995, Streamline Technologies, Inc.

Hills of Clermont - Post Development

. . -----Class: Basin-----Node: POND Basin: S-9 Status: On Site Type: Santa Barbara Group: BASE . . Rainfall File: FLMOD Storm Duration(hrs): 24 Rainfall Amount(in): 8.6 Time Increment(min): 3 Area(ac): 0.72 Curve ‡: 65 Concentration Time(min): 16.2 DCIA(%): 17.1 Lag Time(hrs): 0 -----Class: Weir-----Name: SWALE From Node: SWALB . . Group: BASE To Node: OFFSITE Count: 1 Type: Navis Flow: Both Geometry: Rectangular Span(in): 7080 Rise(in): 999 Invert(ft): 135 Control Elev(ft): 135 TABLE Botton Clip(in): 0 Top Clip(in): 0 Weir Discharge Coef: 3.2 Orifice Discharge Coef: 0.6

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [16] Copyright 1995, Streamline Technologies, Inc. . . Hills of Clermont - Post Development . . ι. • • ------Class: Weir-----. . Name: WBIR From Node: POND Group: BASE To Node: SWALB . . Count: 5 . . Type: Mavis Flow: Both Geometry: Rectangular Span(in): 120 Rise(in): 999 Invert(ft): 135.5 Control Blev(ft): 135.5 . . TABLE . . Bottom Clip(in): 0 Top Clip(in): 0 . . Weir Discharge Coef: 3.2 Orifice Discharge Coef: 0.6 1

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

Post Development - Hydraulics Results

. .

. .

, ,

۰.

. .

x -

• •

ь e

, .

. .

ì

.

:

(Time units	s - hour	s								
Node Name	Group Name	Kax Time Conditions	Max Stage (ft)	Warning Stage (ft)	Nax Delta Stage (ft)	Kax Surface Area (sf)	Hax Time Inflow	Max Inflow (cfs)	Nax Time Outflow	Hax Outflow (cfs)
OFFSITE	BASE	0.00	135.00	135.50	0.0000	0.00	0.00	0.00	0.00	0.00
POND	BASE	4.00	131.76	136.50	0.0144	114974.99	1.08	74.28	0.00	0.00
SWALB	BASE	0.00	134.00	137.50	0.0000	2962.08	0.00	0.00	0.00	0.00

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc. [1]

Post Development - Hydraulics Results

. .

. .

. .

. .

1 1

۰.

e 1

a . .

. .

. .

. , .

No. And Adams

(Time unit:	s - hour	s)								
Node Name	Group Name	Max Time Conditions	Max Stage (ft)	Warning Stage (ft)	Nax Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)	Nax Time Outflow	Max Outflow (cfs)
OFFSITB POND	BASE BASE	0.00 18.63	135.00	135.50 136.50	0.0000 0.0149	0.00 141085.69	18.63 12.00	6.80 140.32	0.00 18.63	0.00 6.80
DWALL	RASR	18.03	135.02	137.50	0.0150	7866.30	18.63	6.80	18.63	6.80

•

.

;

:

.

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

. .

. .

. .

ъ - -

Basin Name:	POND	S-2	S-3	S-4	S-
Group Name:	BASB	BASE	BASE	BASE	BASI
Node Name:	POND	POND	POND	POND	PONI
Hydrograph Type:	SB	SB	SB	SB	SI
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Tine Inc (ain):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLHOD	FLHOD	FLHOD	FLMOD	FLHOI
Rainfall Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24.00	24.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSIT
Time of Conc. (min):	11.40	10.00	14.40	10.00	13.60
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	10.62	0.34	1.18	0.51	1.44
Curve Number:	46.00	53.00	49.00	49.00	56.00
DCIA (%):	0.00	44.80	9.70	42.50	9.70
Time Max (hrs):	12.00	11.95	12.00	11.95	12.00
Flow Max (cfs):	20.11	1.48	2.75	2.04	4.41
Runoff Volume (in):	2.77	6.28	3.77	5.85	4.59
Runoff Volume (cf):	106761	7752	15870	10831	23969

Rasin Name:	5-58	S-8	¢_7	C_0	0_04
Group Name:	RASP	D A C P	0-1 D1CD	0-0 D/CD	0-04 D1CD
Node Name:	PUND	עמטע	ם מאם	מסאם מאסם	2680 1100
Hydrograph Type:	SB	SB	SB	SB	POND SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Tine Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLHOD	FLHOD	FLHOD	FLHOD	FLHOD
Rainfall Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24.00	24.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	14.60	15.80	10.00	15.10	16.10
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	1.18	1.67	0.83	1.39	1.21
Curve Number:	56.00	54.00	50.00	55.00	59.00
DCIA (%):	9.60	14.10	48.20	10.80	11.20
fime Max (hrs):	12.00	12.00	11.95	12.00	12.00
low Max (cfs):	3.52	4.77	3.56	4.02	3.83
lunoff Volume (in):	4.58	4.60	6.28	4.53	5.01
lunoff Volume (cf):	19618	27900	18918	22856	22017
**					
asin Name:	S-9	S-10	S-11	S-11A	S-11B

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [2] Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

, **.**

• •

. .

κ.

. .

.

, .

and a contrast contrast to the second s

Group Name: Node Name:	BASE	BASE	BASE	BASB	BASE
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Tine Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLKOD	FLMOD	FLNOD	FLNOD	REKOD
Rainfall Amount (in):	9.60	9.60	9.60	9 60	0 60
Storm Duration (hr):	24.00	24 00	24 00	24 00	97.00
Statue:	015172	0115172	010172	010TTPP	44.VU
Time of Cone (min).	16 20		12 90	10 00	UNSTIE
Int Time (hm).	10.20	10.00	17.50	19.20	10.90
bag ifme (nr);	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.72	U.44	1.44	0.75	1.00
Curve Number:	65.00	51.00	57.00	58.00	57.00
DCIA (%):	17.10	36.50	11.50	10.80	10.20
Time Hax (hrs):	12.00	11.95	12.00	12.00	12.00
Flow Hax (cfs):	2.70	1.72	4.22	2.17	2.92
Runoff Volume (in):	5.95	5.64	4.80	4.88	4.73
Runoff Volume (cf):	15563	9007	25081	13454	17167

Basin Name:	S-12	S-13	S-14	S-14A	S-15
Group Name:	BASB	BASE	BASE	BASE	BASE
Node Name:	POND	POND	POND	POND	POND
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLHOD	FLHOD	FLHOD	FLHOD	FLHOD
Rainfell Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24 00	24 00
Status:	ONSITE	ONSITE	ONSITE	11111	01517F
Time of Conc. (min):	22.10	11 70	16 20	18 00	17 10
Lag Time (hr):	0.00	0 00	0 00	U UU 10100	0 00
Area (acres):	0.00	0.00 0.70	0 0K	1 20	1 10
Curve Number:	59 00	56 NO	21 UU 101	1.JU 1.JU	1.50
	90.00 15 90	30.00 17 AA	04.VV 0.00	00.VV	03.00
DOIR (#);	13.20	17.90	9.80	10.90	9.00
Time Kax (hrs):	12.00	11.95	12.00	12.00	12.00
Flow Hax (cfs):	2.00	2.51	2.26	3.82	3.43
unoff Volume (in):	5.10	5.03	4.36	4.88	4.19
Runoff Volume (cf):	13342	13151	13444	23037	20704

Basin Name:	8-154	5-16	8-17	5-174	5-10
Froup Name:	RASE	BASE	BASE	RICR	D-10 D-10
lode Name:	POND	роль	PUND	DUNU	עוועם
	1000	1000	rond	41	LAND

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [3] Copyright 1995, Streamline Technologies, Inc.

÷

Post Development Hydrology Data

1.1

8 . ar

. .

. .

. .

κ. .

. .

, ,

•••

6. 9

• •

•

. .

1 1

• • • •

......

.

and a second second on a second result of a second

Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLHOD	FLHOD	FLKOD	FLKOD	FLHOD
Rainfall Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24.00	24.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	19.70	10.00	10.00	15.50	19 10
Lag Time (hr):	0:00	0.00	0.00	0.00	0 00
Area (acres):	0.90	0.34	0.43	1 33	1 73
Curve Number:	63.00	52.00	52.00	53 00	54 00
DCIA (%):	13.60	31.80	43.50	15.30	12.70
Time Max (hrs):	12.00	11.95	11.95	12.00	12.00
Flow Hax (cfs):	2.93	1.30	1.82	3 77	4 47
Runoff Volume (in):	5.58	5.44	6.13	4 56	1.59
Runoff Volume (cf):	18235	6708	9572	22021	28401

Basin Name:	S-20	5-91	5-914	c 910	0.04
Group Name:	BASR	DACE	DICE	0-010 0-00	5-23
Node Name:	DUDD DUDD	DUND	DADD	DAND	BASE
Hydrograph Type:	SB	SB	SB	SB	POND SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	FLKOD	FLMOD	FLMOD	FLHOD	FLYOD
Rainfall Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24.00	24.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	10.00	12.70	11.00	133.00	10.00
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.41	1.32	0.98	1.24	1 03
Curve Number:	52.00	58.00	53.00	57.00	50.00
DCIA (%):	44.80	11.90	14.40	11.90	19.50
Time Max (hrs):	11.95	11.95	11.95	12.45	11.95
Flow Max (cfs):	1.76	4.46	3.11	1.09	3.27
Runoff Volume (in):	6.21	4.93	4.51	4.82	4.49
Runoff Volune (cf):	9242	23640	16039	21693	16804
* * *					
Basin Name:	S-25	S-28	5-20	5-20	C 104
Group Name:	BASR	BASE	0-45 RACP	0-30 Digd	S-3DA
Node Nane:	POND	POND	עמאט	ם פאם תיוחם	BASE
Hydrograph Type:	SB	SR	SB	SD SD	runn GD
- • • •			UU	00	28

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc. [4]

Post Development Hydrology Data

. .

÷ --

• -

• •

• •

. .

.

And a second as the second

	Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
	Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
	Rainfall File:	FLHOD	FLHOD	FLNOD	RIMOD	FLKOD
• •	Rainfall Amount (in):	9.60	9.60	9.60	9.60	4 60 0 8 P
	Storm Duration (hr):	24.00	24.00	24 00	21 00	24 00
1 *	Status:	ONSTTR	ONSTER	ONSITE	 	0NSTTP
	Time of Conc. (min):	10 00	10 00	10 00	15 00	15 10
	Lad Time (hr):	0.00	0.00	0.00	10.00	13.10
, .	Araa (acres):	0.00	0.00	1 00	0.00	0.00
	Cupus Numbers	55 00	10 00	1.00	V.30 5.0 AA	U.89
x - 1	DOIL (V).	15 20	40.00	01.00	JD.UU	57.00
	DOLH (%):	10.00	44.00	14.30	10.40	10.80
	Time Max (hrs):	11.95	11.95	11.95	12.00	12.00
•••	Flow Hax (cfs):	3.22	2.49	3.65	2.92	2.73
	Runoff Volume (in):	4.67	5.80	4.95	4.62	4.76
· ·	Runoff Volume (cf):	15932	13255	17957	16448	15381
••			10000	11001	10110	10001
	TTT Degin Nemet	C 20D	C 11	a 46		
н. н.	Chaun Name,	3-30B	5-31	5-32	5-33	S-33A
	broup Name;	BASE	BASE	BASE	BASE	BASE
1 1	Node Name:	PUND	עאטץ	POND	POND	FOND
	Hydrograph Type:	28	58	SB	SB	SB
	Spec Time Inc (min):	3.00	3 00	ን በበ	2 00	2 00
*· *	Comp Time Inc (min):	3.00	3 00	3 00	3 60	3.00
	Rainfall File.	FLYOD	FLNDD	מחעות	ייייק מעזק	5.VU FLVOD
••••	Rainfall Amount (in):	C 60	0 60	0 60	r 5 m 0 D	
	Storm Duration (hr):	24 00	3.00	3,00	3.00	3.00
	Status:	41.00 AVCT TD	64.00 AUSTRD	61.00 ANCIMO	24.UV QUCIMD	24.00 ONOIDD
. .	Time of Conc. (min):	16 10	10 00		UNSTIB	UNSITE
	Lad Time (bp):	10.10	10.00	10.00	13.20	17.10
• •	Area (acres):	0.00	0.00	V.UU 0.40	0.00	0.00
	Alea (acres).	1.07	V.40	0.43	2.09	1.08
• •	DOIN (NI.	57.00	43.00	52.00	55.00	56.00
	DUIA (%):	11.10	36.00	49.10	13.70	11.30
	Time Max (hrs):	12.00	11.95	11.95	12.00	12.00
	Flow Max (cfs):	3.21	0.86	1.91	6.21	3.08
r 5	Runoff Volume (in):	4.78	4.95	6.47	4.69	4.67
	Runoff Volume (cf):	18554	4671	10093	35592	18318
k . v						
1 1	***				!	
	Basin Name:	S-34	S-35	S-36	S-36B	S-37
	Group Name:	BASE	BASE	BASE	BASR	BASE
•	Node Name:	POND	POND	POND	POND	PUND
h i	Hydrograph Type:	SB	SB	SB	SB	SB
	Cara mi r ()	• • •				-
, ·	Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
• ·	comp fine inc (min):	3.00	3.00	3.00	3.00	3.00
					43	

. .

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc. [5]

Post Development Hydrology Data

• •

. .

. .

. .

. .

,

Rainfall File:	FLKOD	FLMOD	FLHOD	FLKOD	FLMOD
Rainfall Amount (in):	9.60	9.60	9.60	9.60	9.60
Storm Duration (hr):	24.00	24.00	24.00	24.00	24.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	10.00	10.00	12.80	16.70	10.00
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.99	0.16	1.58	1.04	0.22
Curve Number:	56.00	51.00	58.00	55.00	57.00
DCIA (%):	22.20	45.80	14.20	14.40	40.10
Time Kax (hrs):	11,95	11.95	11.95	12.00	11.95
Flow Max (cfs):	3.11	0.68	5.42	3.00	0.98
Runoff Volume (in):	5.27	6.20	5.05	4.73	6.32
Runoff Volume (cf):	18924	3601	28980	17858	5045

Basin Name:	S-38	S-39	S-40	S-41	S-42
Group Name:	BASE	BASE	BASE	BASE	BASE
Node Nane:	POND	POND	POND	POND	POND
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3 00	3 0.0	1 00	2 0.0	2 0.0
Comp Time Inc (min):	3 00	3.00	3.00	2.00	3.00
Hainfall Rile:	RLMOD	5100 RI.KOD	01.00 R1 MOD	STOD STOD	5.00
Rainfall Amount (in).	0 60	0 80	0 60		r LhOD
Storm Duration (hr):	24 00	5.00 91 00	21 00	3.00	9.00
Statue:	49.00 Angiad	64.00 ANSIME	61.00 AUCTOR	24.UU ANGIMD	24.00
Time of Cone (min).	TC 20	16 20	UNDIIL	UNSITE	UNSITE
line of conc. (min): Lod Time (bal):	10.00	10.30	13.70	11.80	10.00
Lag file (mi):	0.00	0.00	0.00	0.00	0.00
Area (acres). Curve Number:	CO.U	U.11 59 00	V.28	J.43	0.38
DATA (W).	11 20	07.00	00.00	47.00	52.00
DOTA (*/:	11.30	2(.80	16.10	28.10	27.40
Time Kax (hrs):	12.00	12.00	12.00	11.95	11.95
Flow Hax (cfs):	2.16	2.43	0.89	1.33	1.39
Runoff Volume (in):	4.21	5.66	4.88	4.75	5.17
Runoff Volume (cf):	13000	14598	4961	7418	7135
					•

Basin Name:	S-43	S-44	S-44A	S-45	
Group Name:	BASE	BASE	BASE	BASE	
Node Name:	POND	POND	POND	POND	
Hydrograph Type:	SB	SB	SB	SB	
Spec Time Inc (min):	3.00	3 00	የ በበ	ን በሰ	
Comp Time Inc (min):	3.00	3.00	3.00	3.00	
Rainfall File:	FLHOD	FLMOD	FLKOD	RTRUD	
Dela Coll Annual (Inla	0.00			101100	
Rainiali Amount (in):	9.50	9.6D	9.60	9,60	

·

:

n - a contractor de la maglia d'antiga à canagana y catalante a composition de la magnitación de la magnitación

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

. .

. .

. .

s

b. . .

. .

+ + 1. 1

, -	Storm Duration (hr):	24.00	24.00	24.00	24.00	
, ,	Status:	ONSITE	ONSITE	ONSITE	ONSITE	
	Time of Conc. (min):	12.20	16.00	19.30	11.90	
• •	Lag Time (hr):	0.00	0.00	0.00	0.00	
• •	Area (acres):	1.26	3.00	0.82	0.73	
	Curve Number:	44.00	49.00	57.00	53.00	
	DCIA (%):	15.40	5.40	11.10	13.40	
· ·	Time Hax (hrs):	12.00	12.00	12.00	11.95	
	Flow Hax (cfs):	2.86	6.38	2.28	2.22	
	Runoff Volume (in):	3.59	3.50	4.78	4.45	
• •	Runoff Volume (cf):	16426	38071	14219	11793	

[6]

45

÷

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

Post Development - Hydraulics Results

. .

. .

5.4

, ,

. .

• •

. .

. .

.

. . ..

, ,

1

(Time units - hours) Node Group Max Time Max Stage Warning Max Delta Max Surface Max Time Max Inflow Max Time Max Outflow (ft] Stage (ft] Stage (ft) Name Name Conditions Area (sf) Inflow (cfs) Outflow (cfs) -----------------------. ----OFFSITE BASB 0.00 135.00 135.50 0.0000 0.00 15.21 13.21 0.00 0.00 135.69 POND BASE 15.21 136.50 0.0149 141543.52 12.00 170.92 15.21 13.21 SWALE BASE 15.21 135.04 137.50 0.0150 15.21 7928.98 13.21 15.21 13.21

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

. .

.....

. .

. .

Basin Name:	POND	S-2	S-3	S-4	S-
Group Name:	BASE	BASE	BASE	BASE	BAS
Node Name:	POND	POND	POND	POND	PON
Hydrograph Type:	SB	SB	SB	SB	S
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.0
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.0
Rainfall File:	SJRWHD96	SJRWND96	SJRWMD96	SJRWHD96	SJRWHD9
Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.3
Storm Duration (hr):	96:00	96.00	96.00	96.00	96.0
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSIT
Time of Conc. (min):	11.40	10.00	14.40	10.00	13.6
Lag Tize (hr):	0.00	0.00	0.00	0.00	0.0
Area (acres):	10.62	0.34	1.16	0.51	1.4
Curve Number:	46.00	53.00	49.00	49.00	56.01
DCIA (%):	0.00	44.80	9.70	42.50	9.7
Time Max (hrs):	59.95	59.95	59.95	59.95	59.9
Flow Hax (cfs):	31.34	1.65	3.84	2.35	5.7
Runoff Volume (in):	4.59	8.64	5.78	8.12	6.8
Runoff Volume (cf):	176775	10668	24320	15031	3553

Basin Name:	5-5B	5-6	S_7	5-0	C . 0
Group Name:	BASR	RASE	BASE	D-0 RASR	5-5/ DICI
Node Name:	POND	POND	DUND	DUND	DUIL
Hydrograph Type:	SB	SB	SB	SB	SI
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	SJRWHD96	SJRWKD96	SJRWHD96	SJRWHD96	SJRWND96
Rainfall Anount (in):	12.33	12.33	12.33	12.33	12.33
Storm Duration (hr):	96.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	14.60	15.80	10.00	15.10	16.10
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	1.18	1.67	0.83	1.39	1.21
Curve Number:	56.00	54.00	50.00	55.00	59.00
DCIA (%):	9.60	14.10	48.20	10.80	11.20
Time Hax (hrs):	59.95	59.95	59.95	59.95	59.95
Flow Max (cfs):	4.58	6.21	4.00	5.26	4.85
Runoll Volume (in):	6.79	6.79	8.61	6.72	7.31
kunoff Volume (cf):	29096	41154	25946	33921	32102

Basin Name:	5-9	5-10	5-11	5-114	e_11b

[1]

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

.

÷ -

. .

Group Name:	BASE	BASE	BASE	BASE	BASE
Node Name:	POND	POND	POND	POND	POND
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	SJRWHD96	SJRWND96	SJRWND96	SJRWMD96	SJRWHD96
Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.33
Storm Duration (hr):	96.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	16.20	10.00	17.20	19.20	16.90
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.72	0.44	1.44	0.76	1.00
Curve Number:	65.00	51.00	57.00	58.00	57.00
DCIA (%):	17.10	36.60	11.50	10.80	10.20
Time Hax (brs):	59.95	59.95	59 95	59 95	50 05
Flow Max (cfs):	3.23	2.01	5 43	20.00	2 77
Runoff Volume (in):	8.40	7.91	7.05	7.15	6.97
Runoff Volume (cf):	21951	12626	36837	19716	25305

Basin Name:	S-12	S-13	S-14	S-14A	S-15
Group Name:	BASE	BASE	BASE	BASE	BASE
Node Nane:	POND	POND	POND	POND	POND
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3,00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	SJRWHD96	SJRWND96	SJRWMD96	SJRWHD96	SJRWMD96
Rainfall Ancunt (in):	12.33	12.33	12.33	12.33	12.33
Storn Duration (hr):	96.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	22.10	11.70	16.80	18.00	17.30
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.72	0.72	0.85	1.30	1.36
Curve Number:	58.00	56.00	54.00	58.00	53.00
DCIA (%):	15.20	17.90	9.80	10.90	9.00
Time Max (hrs):	59.95	59.95	59.95	59.95	59.95
Flow Max (cfs):	2.54	3.10	3.01	4.90	4.63
Runoff Volune (in):	7.40	7.29	6.52	7.15	6.32
Runoff Volume (cf):	19334	19057	20107	33752	31197

+++ Basin Name:	S-154	5-16	c_17	5-171	5-10
Group Name:	BASR	RASE	0-11 R46r	01CD 0-114	0165 9-19
Node Name:	POND	POND	PUND	DV00 DV00	DUND DUND
			1 4110	ЧQ	LVND
				10	

[2]

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [3] Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

. .

ι,

. .

. .

.

.

Hydrograph Type:	SB	SB	SB	SB	S
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	SJRWHD96	SJRWND96	SJRWND96	SJRWHD96	SJRWHD9(
Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.3
Storm Duration (hr):	96.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITI
Time of Conc. (min):	19.70	10.00	10.00	15.50	19.30
Lag Tipe (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.90	0.34	0.43	1.33	1.73
Curve Number:	63.00	52.00	52.00	53.00	54.00
DCIA (%):	13.50	31.80	43.50	15.30	12.70
Time Hax (hrs):	59.95	59.95	59.95	59.95	59.95
Flow Hax (cfs):	3.50	1.53	2.07	4.91	5.91
Runoff Volume (in):	7.98	7.69	8.47	6.73	6.70
Runoff Volume (cf):	26054	9490	13217	32484	42078

Basin Name:	S-20	S-21	S-21A	S-21B	S-23
Group Name:	BASE	BASE	BASE	BASE	BASE
Node Name:	POND	POND	POND	POND	PONE
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00
Rainfall File:	SJRWHD96	SJRWHD96	SJRWHD96	SJRWMD96	SJRWHD96
Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.33
Storn Duration (hr):	96.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	10.00	12.70	11.00	133.00	10.00
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.41	1.32	0.98	1.24	1.03
Curve Number:	52.00	58.00	53.00	57.00	50.00
DCIA (%):	44.80	11.90	14.40	11.90	19.50
Tine Hax (hrs):	59.95	59.95	59.95	60.00	59.95
Now Hax (cfs):	1.98	5.61	3.97	1.33	4.14
Aunoff Volume (in):	8.55	7.21	6.67	7.07	6.61
<pre>unoff Volume (cf):</pre>	12731	34544	23727	31826	24707
**					
Basin Name:	S-25	S-28	S-29	S-30	S-30A
roup Nane:	BASB	BASE	BASE	BASE	BASR
ode Name:	POND	POND	POND	POND	POND
ydrograph Type:	SB	SB	SB	SR	SB

49

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [4] Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

1 .

с. 2

. .

. .

•	Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
	Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
	Rainfall File:	SJRWMD96	SJRWND96	SJRWMD96	SJRWMD96	SJRWMD96	
	Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.33	
	Storm Duration (hr):	96.00	96.00	96.00	96.00	96.00	
`	Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE	
	Time of Conc. (min):	10.00	10.00	10.00	15.00	15.10	
	Lag Time (hr):	0.00	0.00	0.00	0.00	0.00	
	Area (acres):	0.94	0.63	1.00	0.98	0.89	
	Curve Number:	55.00	48.00	57.00	56.00	57.00	
•	DCIA (%):	13.30	42.80	14.30	10.40	10.80	
,							
	Time Hax (hrs):	59.95	59.95	59.95	59.95	59.95	
•	Flow Max (cfs):	4.02	2.87	4.46	3.78	3.50	
	Runoff Volune (in):	6.88	8.05	7.21	6.84	7.01	
•	Runoff Volume (cf):	23466	18401	26175	24335	22635	
·	***						
	Basin Name:	S-30B	S-31	S-32	S-33	S-33A	
	Group Name:	BASB	BASE	BASE	BASE	BASE	
	Node Name:	POND	POND	POND	POND	POND	
	Hydrograph Type:	SB	SB	SB	SB	SB	
•							
	Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
•	Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
•	Rainfall File:	SJRWHD96	SJRWHD96	SJRWHD96	SJRWHD96	SJRWMD96	
	Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.33	
•	Storm Duration (hr):	96.00	96.00	96.00	96.00	96.00	
	Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE	
·	Time of Conc. (min):	16.10	10.00	10.00	15.20	17.10	
•	Lag Time (hr):	0.00	0.00	0.00	0.00	0.00	
	Area (acres):	1.07	0.26	0.43	2.09	1.08	
	Curve Number:	57.00	43.00	52.00	55.00	56.00	
	UULA (%):	11.10	36.00	49.10	13.70	11.30	
	Time Wax (heal.	50 05	50 05	50 OF	50 05	50.05	
•	Flow Wax (ofc):	15.55	39.50	03.90 5 1 1	0 00	59.95	
	Pupoff Volume (in):	9.1J 7 A9	5.04	2.13 0.01	8.UZ C.00	4.00	
•	Runoff Volume (cf):	27281	6621	0.09	50161	0.03 97011	
	Number Volume (or).	21201	0061	19193	52501	27031	
•	***						
	Basin Nane:	S-34	S-35	S-36	S-368	8-37	
	Group Name:	BASE	BASE	BASE	BASE	BASE	
•	Node Nane:	POND	POND	POND	POND	POND	
_	Hydrograph Type:	SB	SB	SB	SB	SB	
•	· -· -						
4	Spec Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
	Comp Time Inc (min):	3.00	3.00	3.00	3.00	3.00	
					50		
					-		

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [5] Copyright 1995, Streamline Technologies, Inc.

Post Development Hydrology Data

. .

• ---

• •

ь *т*

. .

۰....

.

s . .

. .

r 1

、 . , .

· ·

. .

•-- --

Rainfall File:	SJRVND96	SJRWHD96	SJRWHD96	SJEWMD96	SJRWKD96
Rainfall Amount (in):	12.33	12.33	12.33	12.33	12.33
Storm Duration (hr):	95.00	96.00	96.00	96.00	96.00
Status:	ONSITE	ONSITE	ONSITE	ONSITE	ONSITE
Time of Conc. (min):	10.00	10.00	12.80	16.70	10.00
Lag Time (hr):	0.00	0.00	0.00	0.00	0.00
Area (acres):	0.99	0.16	1 58	1 04	0,00
Curve Number:	56.00	51.00	58 00	55 00	57 00
DCIA (%):	22.20	45 80	14 20	14 40	10 10
	22120	10100	17.40	14.40	40.10
Time Max (hrs):	59.95	59.95	59.95	59,95	59.95
Flow Max (cfs):	4.51	0.77	6.77	3.88	1.10
Runoff Volume (in):	7.55	8.53	7.34	6.94	8.72
Runoff Volume (cf):	27133	4956	42100	26218	6965
* * *					
Basin Name:	S-38	S-39	S-40	S-41	S-42
Group Name:	BASB	BASE	BASE	BASB	BASE
Node Name:	POND	POND	POND	POND	POND
Hydrograph Type:	SB	SB	SB	SB	SB
Spec Time Inc (min):	3.00	3.00	3.00	3 00	3 00
Comp Time Inc (min):	3.00	3.00	3 00	3 00	2.00
Rainfall File:	SJRVND96	SJRWWD96	STRAMAG	5100 STDWWD06	0.00 6 TOWN06
Rainfall Amount (in):	12.33	12.33	19 33	10 33	19 99
Storm Duration (hr):	96.00	96 00	06 00	12.00	12.33
Status:	ONSITE	015175	010100	20.00 ANCIMD	30.00 ANGIMB
Time of Conc. (min):	16 80	16 30	12 70	11 00	UNSITE
Lag Time (br):	0 00	10.00	13.10	11.00	10.00
Area (acres):	1 22	0.00	0,00	0.00	0.00
Curve Number:	£3 00	V+11 57 00	V.40 55.00	0.43	0.38
	11 90	07.00	55.UU 17.10	47.00	52.00
born (%).	11.30	21.80	17.10	28.10	27.40
Time Hax (hrs):	59.95	59.95	59.95	59,95	59.95
Flow Max (cfs):	2.91	2.96	1.13	1.67	1.67
Runoff Volume (in):	6.32	8.00	7.11	5.85	7.40
Runoff Volume (cf):	19516	20622	7228	10696	10203
112					
FFF Bagin Nemot	a 10	_			
Group Name:	5-43	S-44	S-44A	S-45	
Nodo Nezo:	RARR	BASE	BASE	BASE	
Hudrodnanh Trans	POND	POND	POND	POND	
nyarugraph Type:	SB	SB	SB	SB	
Spec Time Inc (min):	3.00	3.00	3.00	3.00	
Comp Time Inc (min):	3.00	3.00	3.00	3.00	
Rainfall File:	SJRWHD96	SJRWMD96	SJRWHD96	SJRWHD96	
Rainfall Amount (in):	12.33	12.33	12.33	12.33	
				E1	
COMP TIME INC (MIN): Rainfall File: Rainfall Amount (in):	3.00 SJRWMD96 12.33	3.00 SJRWND96 12.33	3.00 SJRWHD96 12.33	3.00 SJRWHD96 12.33	

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) Copyright 1995, Streamline Technologies, Inc. [6]

Post Development Hydrology Data

. .

, .

. .

, ,

. .

ι.

. . . .

. .

. .

.

.

•

	Storm Duration (hr):	96.00	96.00	96.00	96.00	
•	Status:	ONSITE	ONSITE	ONSITE	ONSITE	
	Time of Conc. (min):	12.20	16.00	19.30	11.90	
	Lag Time (hr):	0.00	0.00	0.00	0.00	
	Area (acres):	1.26	3.00	0.82	0.73	
	Curve Number:	44.00	49.00	57.00	53.00	
	DCIA (%):	15.40	5.40	11.10	13.40	
•	Time Max (hrs):	59.95	59.95	59.95	59.95	
	Flow Max (cfs):	4.03 -	9.23	2.95	2.89	
•	Runoff Volume (in):	5.48	5.47	7.02	6.60	
•	Runoff Volume (cf):	25061	59551	20907	17502	

÷

!

Advanced Interconnected Channel & Pond Routing (ICPR Ver 2.11) [1] Copyright 1995, Streamline Technologies, Inc.

Post Development - Hydraulics Results

•

1.1

• •

. .

• •

. .

6.

. .

• •

1.

. .

. .

• •

, . . .

, .

. .

• •

. .

r 4

ι.

x .

. .

ι.

, .

, , , ,

њ... р. 4

_

(Tine unit Node Name	s - hour Group Name	s) Hax Time Conditions	Max Stage (ft)	Warning Stage (ft)	Max Delta Stage (ft)	Max Surface Area (sf)	Max Time Inflow	Max Inflow (cfs)	Max Time Outflow	Max Outflow
OFFSITE	BASB	0.00	135.00	135.50	0.0000	0.00	60.64	60.88	0.00	0.00
POND	BASE	60.63	136.03	136.50	0.0100	143808.43	60.00	212.31	60.63	60.88
SWALE	BASE	60.64	135.10	137.50	0,0100	8239.10	60.63	60.88	60.64	60.88

Conklin, Porter and Holmes	Temp. Sheet No
AINSTREET CENTER SUITE 100 101 N. WOODLAND BOULEVARD DELAND, FLORIDA 32720 TEL 904-736-4142 FAX 904-736-8412 Job No67 67 78	Caic. by <u>JRK</u> Date <u>10/3/97</u> Checked by Date
JBJECT Discharge Velocily Cales Div. of Work	Sheet No of

Weir Dischorae 60.88 cfs 5 weirs @ 10' each $Q = CL H^{3/2}$ 60.88 = 3 × 50 × H 3/2 H= 055 Q=AV 60.88 = (.55 * 50) × V V= 2.22 AB

Swale Discharge 60.88 cls 590 If of swale w/ salely lactor of 2 = 295' $60.88 = 3 \times 295 \times H^{3}_{2}$ H = .168'60.88 = (.168 * 295) * V [V = 1.23 ft/s]

IV. Pollution Abatement and Recovery

. .

6

For the portions of the site to be developed either as single family residential, streets, developed open areas, or retention ponds themselves which contribute runoff, pollution abatement has been provided in the proposed retention pond. The following calculations shown on pages 56-57 summarize the required pollution abatement volumes for the development. The pollution abatement volume is intended to be percolated into the ground in the retention pond. Pollution abatement volume recovery analysis from the overflow elevation downward have been made, using the Modret program, and those calculations are attached on pages 58-59. The recovery time for the retention pond is within the SJRWMD stipulated maximum period of 72 hours.

ENGINEERS, INC.	Temp. Sh	eet No
MAINSTREET CENTER SUITE 100 101 N. WOODLAND BOULEVARD DELAND, FLORIDA 32720	Calc. byK	_ Date7
TEL 904-736-4142 FAX 904-736-8412 Job No. <u>676778</u>	Checked by	Date
SUBJECT Div. of Work	Sheet No.	of
\square \square \square \square \square \square \square		
Pollution Abatement		
P I I I I I		
Required Volume 5		
1/2" over total area, Plus	the greater of	f
. 1/2" over total area, o	c	
$1/4''$ as a the τ		
. Over the Imper Vie	ue area,	
lotal Area = 61.19 ac.		
$I_{\rm EDD}$ = 21.14 ac		
"B"over lotal area = 12 * 12 * 6	1,19 = 2.55	ere A
		22-11
. 14 over Impervious filea = 14 * /	2721.14 = 2,20	ac.A
Recipient with a Dee Dee - th		
	5.10 ac-ft /	
Provided 111 a - THE 20 OTF		
1100100000000000000000000000000000000	see Storie /Aren/Sto	proger kille)
:		-

STAGE / AREA / STORAGE TABLE EAST KNAPP PARCEL

. .

. . .

. .

. .

, ,

, .

. .

. .

. .

. .

۰. ۱

. .

.

•••

. .

Stage	Агеа	Storage
130.00	2.367	0.00
131.00	2.522	2.44
132.00	2.677	5.04
133.00	2.832	7.80
134.00	2.987	10.71
135.00	3.142	13.77
135.50	3.220	15.36
136.50	3.375	18.66
137.50	3.530	22.11

Weir Elevation =	135.50 ft
Storage below weir =	15.36 ac-ft
Treatment Vol. Req. =	5.10 ac-ft

;

ţ

57

-

POLLUTION ABATEMENT VOLUME ANALYSIS USING 'NODRET 4' PROGRAM

Written by: Nicolas E. Andreyev, P.E. (May, 1992) { Sponsored by: SWFWHD/PSI }

SUMMARY OF INPUT PARAMETERS

. .

. .

<u>н</u> н

۰.

. .

. .

ъ. 1

r .

ы. н

. .

• •

r s

. .

POND NAME / NUMBER : East Enapp Parcel Fond 9-15-97 -----AVERAGE WETTED POND LENGTH =============> 780.000 ft AVERAGE WETTED POND WIDTH =============>> 156.000 ft AVERAGE ELEVATION OF BOTTON OF AQUIFER ======> 95.000 ft AVERAGE ELEVATION OF DESIGN GROUNDWATER TABLE ===> 100.000 ft AVERAGE ELEVATION OF POND BOTTOH ========> 130.000 ft AVERAGE HORIZONTAL HYDRAULIC CONDUCTIVITY ======> 40.000 ft/d AVERAGE EFFECTIVE STORAGE COEFF. OF SOIL =======> 0,200 AVERAGE STORAGE COEFFICIENT OF POND AREA =======> 1.000 POLLUTION ABATEMENT VOLUKE TO BE TREATED ======>> 15.365 ac-ft 12.00 hours No. OF TIME INCREMENTS AFTER STORM EVENT =======>) 6.00 NUMBER OF GROUNDWATER CONTROL FRATURES =======> 0.00

58

.....

SUMMARY OF POLLUTION ABATEMENT MODEL RESULTS

POND NAME / No.: East Knapp Parcel Pond 9-15-97

, .	CUMULATIVE TIME (hrs.)	WATER ELEVATION (feet)	INSTANTANEOUS INFILTRATION RATE (cfs)	AVERAGE INPILTRATION RATE (cfs)		
• •						
۰.	0.000	135.501	12.799 *			
, ,	12.000	131.790	8.103	10.4513		
۰.	24.000	129.747	4.863	5.7554	Pond Bottom @ EL 130.0	
, ,	36.000	128.337	3.537	3.9714	Total Drowdown in less than 24 h	าเร
•• ••	48.000	127.235	2.857	3.1031		
	60.000	126.308	2.434	2.6101		
r •	72.000	125.507		2.2580		

59

* This value (with associated time) is an equivalent instantaneous infiltration rate to be used with a stornwater routing model
 (such as ADICPR or others). Just before this time, the infiltration is zero (prior to runoff reaching the pond).

. .

s. . .

• •

• •

, ,

• •

۰ د ۰.....

• •

V. <u>Environmental</u>

;

An environmental assessment of the site was performed by Modica & Associates, and we have included a copy of their findings along with this report. Based on their visits to the site there are no wetlands located on the site. They did find evidence of Gopher Tortoises during their site investigation. Before any construction on the site commences any Gopher Tortoises will be relocated to suitable habitat.

VI. Storm Sewer System

ł

61

A stormwater collection system consisting of inlets, concrete storm sewer piping, and discharge structures into the proposed retention pond is depicted on the attached Construction Plans. That stormwater collection system was designed using the Hydraflow computer program (FDOT Zone 7, 10-Year Frequency) with basin determinations for that purpose. Results of that analysis were used to determine pipe sizes, slopes, etc., as shown on the attached Engineering Plans. The input and output data from the Hydraflow analysis is attached as pages 62-119.
<u> </u>	Q = 108.53				Nv = 0.013	Len =	1.0	J	LC = 1.00
POND/	Outfall								
	Invert	Depth	HGL	EGL	Area	Vel	T-W	Vid	Cover
Dnstrm Upstrm	130.00 130.00	60 60	135.00 134.98	135.18 135.16	31.89 31.71	3.40 3.42	6.19 7.32		N/A 8.33
Drainag Runoff Time of Inlet Tin Intensity Cumula Q = CA	ge area (ac coefficient conc. (mi me (min) y @ 10 yr tive C x A . x I (cfs)) (C) n) (in/hr)	$= 0.00 \\= 0.00 \\= 31.86 \\= 0.00 \\= 4.66 \\= 23.31 \\= 108.53$		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional C Full-flow ca	ert (%) y grade li th (in) und elev. urcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) ĵs)		0.000 -2.196 31 146.00 0.00 0.00 0.00
Q Catch Q Carry Q Captu Q Bypas	iment (cfs) vover (cfs) ired (cfs)) (ofs)	= 0.00 = 0.00 = 0.00		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)			0.00 0.00 0.00
~ ~ 1		(018)	- 0.00	*****			r oo A k o o kii a a	- 11 44 - 1 9 44 - 19	
Line 2	Q = 12.	58 S	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	180.0	J	LC = 0.50
Line 2 3-19 TO S	Q = 12. 5-20 / Down Invert	58 S stream line Depth	Size = 18×18 = 1 HGL	(Cir) EGL	Nv = 0.013 Area	Len =	 180.0 T-W	JJ 	LC = 0.50
Line 2 3-19 TO S Onstrm Jpstrm	Q = 12. S-20 / Down Invert 130.00 140.00	58 S stream line Depth 18 16	Size = 18×18 HGL 135.16 141.35	(Cir) EGL 135.94 142.23	Nv = 0.013 Area 1.77 1.68	Len = Vel 7.12 7.50	180.0 T-W 0.00 0.90	JJ	LC = 0.50 Cover 14.50 8.70
Line 2 Line 2 S-19 TO S Dustrm Upstrm Drainage Runoff c Time of Inlet Tim Intensity Cumulat Q = CA :	Q = 12. S-20 / Down Invert 130.00 140.00 e area (ac) coefficient conc. (min ne (min) me (min) me (min) me (C x A x I (cfs)	58 S stream line Depth 18 16 (C) (c)	Size = 18×18 HGL 135.16 141.35 = 0.41 = 0.61 = 14.41 = 10.00 = 6.51 = 1.93 = 12.58	(Cir) EGL 135.94 142.23	Nv = 0.013 Area 1.77 1.68 Slope of inve Slope energy Critical depth Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 7.12 7.50 ert (%) grade lin n (in) nd elev. (rcharge (i (cfs) pacity (cfs)	180.0 T-W 0.00 0.90 ne (%) ft) ft) ft)	J) id =	Cover 14.50 8.70 5.556 3.489 16 150.20 0.00 0.00 24.75

	Q = 50.00		$ize = 36 \times 36$	5 (Cir)	Nv = 0.013	Len =	201.0		JLC = 0.5
S - 22 TO	2-23 / Down	nstream line	= 1						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Wid	Cover
Dnstrm Upstrm	130.00 138.50	36 27	135.16 140.75	135.94 141.95	7.07 5.70	7.08 8.78	0.00 2.59	•	13.00 3.50
Drainag Runoff Time of Inlet Ti Intensit Cumula Q = CA Q Catcl Q Catcl Q Catcl Q Captu Q Bypa	ge area (ac coefficient f conc. (mi me (min) ty @ 10 yr ative C x A x I (cfs) hment (cfs) vover (cfs) ured (cfs) ssed to 0) (C) n) (in/hr) (cfs)	= 1.03 = 0.45 = 30.74 = 10.00 = 4.74 = 10.55 = 50.00 = 3.35 = 0.00 = 3.35 = 0.00		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cay Gutter slope Cross slope Width of Flo	ert (%) y grade li h (in) und elev. urcharge (2 (cfs) pacity (cf (ft/ft) (ft/ft) w (ft)	ne (%) (ft) (ft) fs)		4.229 2.993 27 145.00 0.00 137.15 0.00 0.04 4.33
	<u>سے جنر عد کے میر شرک میں اگر اور خان ا</u>				ا بہ ہے کے ترجیک پیرے کان نا نا با کے		*****	بين جو جو بين وي خو د	
Line 4 5-23 TO :	Q = 48. S-24 / Down	17 Si	$ze = 36 \times 36$ $= 3$	(Cir)	Nv = 0.013	Len =	82.0		ILC = 0.50
Line 4 S-23 TO 3	Q = 48. S-24 / Down Invert	17 Si Istream line Depth	ze = 36 x 36 = 3 HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	82.0 T-W	J Vid	ILC = 0.50
Line 4 S-23 TO S Dnstrm Upstrm	Q = 48. S-24 / Down Invert 139.00 144.00	17 Si Istream line Depth 28 27	ze = 36 x 36 = 3 HGL 141.35 146.21	(Cir) EGL 142.37 147.37	Nv = 0.013 Area 5.94 5.59	Len = Vel 8.10 8.62	82.0 T-W 2.66 2.64	J Vid	SILC = 0.50 Cover 3.00 3.00
Line 4 S-23 TO S Dostrm Upstrm Drainag Runoff of Inlet Tim Intensity Cumulat Q = CA	Q = 48. S-24 / Down Invert 139.00 144.00 e area (ac) coefficient conc. (min ne (min) / @ 10 yr (tive C x A x I (cfs)	$\begin{array}{c} 17 \\ Simple Si$	$ze = 36 \times 36$ $= 3$ HGL 141.35 146.21 $= 0.00$ $= 0.00$ $= 30.28$ $= 0.00$ $= 4.78$ $= 10.08$ $= 48.17$	(Cir) EGL 142.37 147.37	Nv = 0.013 Area 5.94 5.59 Slope of inve Slope energy Critical depth Natural grou Upstream sur Additional Q Full-flow cap	Len = Vel 8.10 8.62 ert (%) grade lin 1 (in) nd elev. (rcharge (1 (cfs) pacity (cfs)	82.0 T-W 2.66 2.64 ne (%) (ft) ft) s)	J Vid	Cover 3.00 3.00 6.098 6.091 27 150.00 0.00 0.00 164.69

	Q = 46	5.45 <u>S</u>	$ize = 36 \times 36$	(Cir)	Nv = 0.013	Len =	80.0		JLC = 0.5
S-24 TO	S-26 / Dow	nstream line	= 4						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id	Cover
Dnstrm Upstrm	144.50 146.00	27 26	146.79 148.17	147.79 149.29	5.79 5.48	8.03 8.48	2.62 2.68		2.50 3.50
Drainag Runoff Time of Inlet Ti Intensit Cumula Q = CA Q Catcl Q Catcl Q Carry Q Captu Q Bypa	ge area (ac coefficient f conc. (mi me (min) ty @ 10 yr ative C x A x I (cfs) hment (cfs) yover (cfs) ured (cfs) assed to 4) (C) n) (in/hr)) (cfs)	= 0.00 $= 0.00$ $= 29.84$ $= 0.00$ $= 4.81$ $= 9.65$ $= 46.45$ $= 0.00$ $= 0.00$ $= 0.00$ $= 0.00$		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional (Full-flow cay Gutter slope Cross slope Width of Flo	ert (%) y grade lin th (in) and elev. archarge (2 (cfs) pacity (cf (ft/ft) (ft/ft) w (ft)	ne (%) (ft) (ft) (s)		1.875 1.873 26 152.50 0.00 91.32 0.00 0.00 0.00
Line 6 5-26 TO 1	Q = 46.	.86 Si	$ze = 36 \times 36$	(Cir)	Nv = 0.013	Len =	94.0	J	LC = 0.50
Line 6 S-26 TO (Q = 46. S-27 / Down Invert	.86 Si Istream line Depth	ze = 36 x 36 = 5 HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	94.0 	J 	(LC = 0.5(Cover
Line 6 S-26 TO a Dnstrm Upstrm	Q = 46. S-27 / Down Invert 146.50 150.50	.86 Si Instream line Depth 27 26	ze = 36 x 36 = 5 HGL 148.73 152.68	(Cir) EGL 149.80 153.81	Nv = 0.013 Area 5.63 5.51	Len = Vel 8.32 8.51	94.0 T-Wi 2.59 2.67	J d	LC = 0.50 Cover 3.00 3.50
Line 6 S-26 TO a Dnstrm Upstrm Drainag Runoff of Inlet Tir Intensity Cumula Q = CA	Q = 46. S-27 / Down Invert 146.50 150.50 ge area (ac) coefficient conc. (min ne (min) y @ 10 yr (tive C x A x I (cfs)	$\frac{.86}{100} = \frac{100}{100}$	$ze = 36 \times 36$ = 5 HGL 148.73 152.68 = 0.00 = 0.00 = 29.32 = 0.00 = 4.86 = 9.65 = 46.86	(Cir) EGL 149.80 153.81	Nv = 0.013 Area 5.63 5.51 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 8.32 8.51 ert (%) 9 grade lir h (in) nd elev. (rcharge (19 0 (cfs) bacity (cfs)	94.0 T-Wi 2.59 2.67 ne (%) (ft) ft) s)	J d = = = =	Cover 3.00 3.50 4.255 4.258 26 157.00 0.00 137.58

Line 7	Q = 1	11.01	Size = 18 x 1	8 (Cir)	Nv = 0.013	Len =	= 39.0	JLC = 0.5
S-20 TO	S-21 / Do	wnstream lin	ne = 2					
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	140.30 146.50	18 15	141.79 147.77	142.39 148.51	1.77 1.59	6.24 6.92	1.49 1.09	8.40 2.20
Drainag Runoff Time of Inlet Ti Intensit Cumula Q = CA	ge area (a coefficien f conc. (m me (min) y @ 10 yn tive C x A x I (cfs)	c) nt (C) in) r (in/hr) A	= 1.32 = 0.49 = 14.19 = 10.00 = 6.54 = 1.68 = 11.01		Slope of in Slope energ Critical dep Natural gro Jpstream s Additional Full-flow ca	vert (%) gy grade li oth (in) und elev. urcharge Q (cfs) upacity (cf	ine (%) (ft) (ft) fs)	= 15.897 = 15.684 = 15 = 150.20 = 0.00 = 0.00 = 41.87
Q Catch Q Carry Q Captu Q Bypas	ument (cfs) vover (cfs) ured (cfs) ssed to 0	s)) (cfs)	$= 4.68 \\= 0.00 \\= 4.68 \\= 0.00$		Gutter slope Cross slope Vidth of Fl	e (ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 5.41
Line 8	Q = 3.9	97 S	lize = 18 x 18	(Cir) N	v = 0.013	Len =	160.0	JLC = 0.50
S-20 TO S	S-21B / Dov Invert	wnstream lir Depth	ne = 7 HGL	EGL	Area	Vel	T-Wid	Cover
Dnstrm Upstrm	146.60 147.40	18 12	148.14 148.36	148.22 148.53	1.77 1.19	2.25 3.33	0.00 1.44	2.10 2.52
Drainage Runoff co Time of c Inlet Tim Intensity Cumulati Q = CA x	e area (ac) oefficient conc. (min e (min) @ 10 yr (we C x A t I (cfs)	(C) = 1) = (in/hr) = =	= 1.24 = 0.48 = 13.30 = 13.30 = 6.68 = 0.60 = 3.97	SI SI Cr Na Ur Ac Fu	ope of inve ope energy itical deptl atural grou ostream sur lditional Q ll-flow cap	ert (%) grade lin n (in) nd elev. (f ccharge (f (cfs) acity (cfs)	e (%) = ; t) = t) =	= 0.500 = 0.198 = 9 = 151.42 = 0.00 = 0.00 = 7.43
2 Catchm 2 Carryov 2 Capture	nent (cfs) ver (cfs) ed (cfs)	=	= 3.97 = 0.00 = 3.97	Gu	itter slope (oss slope (ft/ft) ft/ft)		= 0.00 = 0.02

Line 9	Q = 3.	11	$Size = 18 \times 18$	(Cir)	Nv = 0.013	Len =	- 75.0	$\frac{75.0 \qquad \text{JLC} = 0.5}{2}$	
S-21 TO	S-21A / Do	wnstream	line $= 7$						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Co	
Dnstrm Upstrm	146.60 147.00	18 14	148.14 148.19	148.19 148.26	1.77 1.50	1.76 2.07	0.00 1.21	2.10 2.22	
Drainag Runoff Time of Inlet Ti Intensit Cumula Q = CA Q Catcl Q Carry O Capt	ge area (ac coefficient f conc. (mi me (min) ty @ 10 yr ative C x A x I (cfs) ment (cfs) wred (cfs)) t (C) n) (in/hr)	= 0.98 = 0.45 = 11.00 = 11.00 = 7.06 = 0.44 = 3.11 = 0.00 = 3.11		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional (Full-flow cap Gutter slope Cross slope	ert (%) y grade li h (in) and elev. archarge () (cfs) pacity (cf (ft/ft) (ft/ft)	ne (%) (ft) (ft) 	= 0.533 $= 0.093$ $= 8$ $= 150.7$ $= 0.00$ $= 0.00$ $= 7.67$ $= 0.00$ $= 0.02$	
Q Bypa	ssed to 8	(cfs)	= 0.00		Width of Flo	ow (ft)		= 10.56	
Q Bypa	Q = 57.	(cfs) .70 : ream line =	= 0.00 Size = 48 x 48	(Cir)	Width of Flo	ow (ft) 	200.0	= 10.56	
Q Bypa	Q = 57. -2 / Downstr Invert	(cfs) .70 s ream line = Depth	= 0.00 Size = 48 x 48 1 HGL	(Cir) EGL	Width of Flo	vw (ft) Len = Vel	200.0 	= 10.56 JLC = 0 d Cov	
Q Bypa Line 10 S-1 TO S Dnstrm Upstrm	Q = 57. -2 / Downstr Invert 130.00 148.00	(cfs) .70 = 	= 0.00 Size = 48 x 48 1 HGL 135.16 150.25	(Cir) EGL 135.49 151.23	Width of Flo Nv = 0.013 Area 12.56 7.26	Len = Vel 4.59 7.94	200.0 T-Wi 0.00 3.97	= 10.56 JLC = 0 d Cov 12.00 2.40	
Q Bypa Line 10 G-1 TO S Dostrm Upstrm Drainag Runoff of Inlet Tim Intensity Cumulat Q = CA	Q = 57. $Q = 57.$ $-2 / Downstr$ Invert 130.00 148.00 e area (ac) coefficient conc. (min ne (min) $/ @ 10 yr ($ tive C x A x I (cfs)	(cfs) .70 : .70 : 	= 0.00 Size = 48 x 48 1 HGL 135.16 150.25 = 0.34 = 0.61 = 24.11 = 10.00 = 5.33 = 10.83 = 57.70	(Cir) EGL 135.49 151.23	Width of Flo Nv = 0.013 Area 12.56 7.26 Slope of inve Slope energy Critical depth Natural grou Upstream sun Additional Q Full-flow cap	Len = Vel 4.59 7.94 ert (%) grade lin n (in) nd elev. (rcharge (1 (cfs) pacity (cfs)	200.0 T-Wi 0.00 3.97 ne (%) ft) ft) s)	JLC = 0 $JLC = 0$ $d Cov$ 12.00 2.40 $= 9.000$ $= 7.870$ $= 27$ $= 154.4$ $= 0.00$ $= 0.00$ $= 430.9$	

	Q = 56	5.88	Size = 48 x 48	(Cir)	Nv = 0.013	Len =	48.0	J	LC = 0.5
S-2 TO S	5-3 / Downst	ream line	= 10						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id	Cover
Dnstrm Upstrm	148.50 149.40	27 27	150.74 151.63	151.70 152.60	7.22 7.20	7.87 7.90	2.99 3.97		1.90 1.63
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA Q Catch Q Catch Q Catch Q Captu Q Bypa	ge area (ac coefficient f conc. (mi me (min) y @ 10 yr ative C x A x I (cfs) urent (cfs) vover (cfs) ured (cfs)) (C) n) (in/hr)	= 1.16 = 0.39 = 23.84 = 13.80 = 5.35 = 10.63 = 56.88 = 0.00 = 2.98 = 0.00		Slope of inverse Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap Gutter slope Cross slope Width of Flo	ert (%) y grade lin h (in) und elev. urcharge (2 (cfs) pacity (cf (ft/ft) (ft/ft) w (ft)	ne (%) (ft) (ft) (s)		1.875 1.876 27 155.03 0.00 0.00 196.70 0.00 0.04 5.34
~ 25)pu			,	ی چر ی دا کا تو کا در ها کا در	ن یا به ها ه به همه به از ه به د				
Line 12	Q = 56. -4 / Downstr	.04 ream line =	Size = 42×42	(Cir)	Nv = 0.013	Len = :	271.0		 LC = 0.50
Line 12	Q = 56. -4 / Downstr Invert	.04 ream line = Depth	Size = 42 x 42 (= 11 HGL	(Cir) EGL	Nv = 0.013 Area	Len = :	271.0 T-Wi	JI	 LC = 0.50 Cover
Line 12 S-3 TO S Onstrm	Q = 56. -4 / Downstr Invert 149.50 153.00	.04 ream line = Depth 31 28	Size = 42 x 42 (= 11 HGL 152.11 155.29	(Cir) EGL 152.94 156.39	Nv = 0.013 Area 7.71 6.68	Len = 1 Vel 7.27 8.39	271.0 T-Wi 3.02 3.33	JI	Cover 2.03 2.34
Line 12 Line 12 S-3 TO S Destrm Drainag Runoff of Inlet Tim Intensity Cumulat Q = CA	Q = 56. -4 / Downstr Invert 149.50 153.00 ge area (ac) coefficient conc. (mir ne (min) y @ 10 yr (tive C x A x I (cfs)	.04 ream line = Depth 31 28 (C) 1) (in/hr)	Size = 42×42 (= 11 HGL 152.11 155.29 = 0.51 = 0.57 = 22.34 = 10.00 = 5.51 = 10.17 = 56.04	(Cir) EGL 152.94 156.39	Nv = 0.013 Area 7.71 6.68 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 7.27 8.39 ert (%) grade lin h (in) nd elev. (rcharge (cfs) pacity (cfs)	271.0 T-Wi 3.02 3.33 ne (%) ft) ft) ft)	JI id = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	Cover $Cover$ 2.03 2.34 1.292 1.273 28 158.84 0.00 0.00 114.34

	Q = 54	.90	$Size = 36 \times 36$	(Cir)	Nv = 0.013	Len =	78.0		JLC = 0.5
S-4 TO S	-5 / Downst	ream line =	= 12						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	153.80 155.00	22 22	155.60 156.80	157.98 159.18	4.44 4.44	12.36 12.36	2.94 2.94		2.04 2.50
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA Q Catch Q Catch Q Captu Q Bypa:	ge area (ac coefficient conc. (mi me (min) y @ 10 yr tive C x A x I (cfs) ment (cfs) over (cfs) red (cfs) ssed to 12) (C) n) (in/hr)	= 1.44 = 0.46 = 21.91 = 10.00 = 5.55 = 9.88 = 54.90 = 4.79 = 0.00 = 4.79 = 0.00		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional Q Full-flow ca Gutter slope Cross slope Width of Flo	ert (%) y grade li h (in) und elev. urcharge (2 (cfs) pacity (cf (ft/ft) (ft/ft) w (ft)	ne (%) (ft) (ft) (s)		1.538 1.538 28 160.50 0.00 0.00 82.72 0.00 0.04 5.50
		ین ها ها بنه ها بین که بین ها ها ها	, <u> </u>						** = = = =
Line 14 5-5 TO S-	Q = 3.8	5 Stream line	Size = 18 x 18 = 13	(Cir)	Nv = 0.013	Len =	65.0		 TLC = 0.50
Line 14 5-5 TO S-	Q = 3.8 ·5A / Downs Invert	5 Stream line Depth	Size = 18 x 18 = 13 HGL	(Cir) EGL	Nv = 0.013 Area	Len = ·	65.0 	J	 TLC = 0.5(
Line 14 S-5 TO S- Dnstrm Upstrm	Q = 3.8 •5A / Downs Invert 155.00 158.00	5 Stream line Depth 18 9	Size = 18 x 18 = 13 HGL 157.99 158.75	(Cir) EGL 158.06 159.04	Nv = 0.013 Area 1.77 0.88	Len =	65.0 T-W 0.00 1.50	J /id	LC = 0.5(Cover 4.00 3.10
Line 14 S-5 TO S- Dnstrm Upstrm Drainage Runoff c Time of Inlet Tin Intensity Cumulat Q = CA	Q = 3.8 -5A / Downs Invert 155.00 158.00 e area (ac) coefficient conc. (min he (min) y @ 10 yr (ive C x A x I (cfs)	5 Stream line Depth 18 9 (C) (in/hr)	Size = 18×18 = 13 HGL 157.99 158.75 = 0.00 = 0.00 = 10.83 = 0.00 = 7.09 = 0.54 = 3.85	(Cir) EGL 158.06 159.04	Nv = 0.013 Area 1.77 0.88 Slope of inve Slope energy Critical depth Natural grou Upstream su Additional Q Full-flow cap	Len = $\frac{1}{2.18}$ 2.18 4.37 ert (%) grade line n (in) nd elev. (rcharge (free (cfs) pacity (cfs)	65.0 T-W 0.00 1.50 ne (%) ft) ft) ft)	/id = = = = =	Cover 4.00 3.10 4.615 1.507 9 162.60 0.00 22.56

	Q = 3.	93 5	$Size = 18 \times 18$	(Cir)	Nv = 0.013	Len =	150.0	JLC =
S-5A TO	S-5B / Dov	vnstream lin	e = 14					
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid Co
Dnstrm Upstrm	158.10 161.40	10 9	1 58.9 0 162.16	1 5 9.16 162.46	0.95 0.89	4.12 4.40	1.09 1.50	3.00 2.50
Drainag Runoff Time of Inlet Ti Intensit Cumula Q = CA	ge area (ac coefficient f conc. (mi me (min) y @ 10 yr ative C x A x I (cfs)) : (C) n) (in/hr)	= 1.18 = 0.46 = 10.00 = 10.00 = 7.24 = 0.54 = 3.93		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) (s)	$= 2.200 \\= 2.193 \\= 9 \\= 165.4 \\= 0.00 \\= 0.00 \\= 15.58 \\$
Q Catcl Q Carry Q Capti Q Bypa	nment (cfs) vover (cfs) ured (cfs) ssed to 13) 6 (cfs)	$= 3.93 \\= 0.00 \\= 3.93 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 6.42
		همه این چر پن ها چه بیا ای کا کا ا						
Line 16	Q = 48.	.63 S	$ize = 36 \times 36$	(Cir)	Nv = 0.013	Len =	81.0	JLC = (
Line 16 5-5 TO S	Q = 48. -6 / Downstr Invert	.63 S ream line = Depth	ize = 36 x 36 13 HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	81.0 	JLC = (///////////////////////////////////
Line 16 S-5 TO S Dnstrm Upstrm	Q = 48. -6 / Downstr Invert 155.50 156.80	.63 S ream line = Depth 30 27	ize = 36 x 36 13 HGL 157.99 159.02	(Cir) EGL 158.92 160.19	Nv = 0.013 Area 6.27 5.61	Len = Vel 7.75 8.66	81.0 T-W 2.73 2.63	JLC = 0 /id Cov 2.00 2.62
Line 16 S-5 TO S Dnstrm Upstrm Drainag Runoff of Inlet Tim Intensity Cumulat Q = CA	Q = 48. -6 / Downstr Invert 155.50 156.80 e area (ac) coefficient conc. (mir ne (min) / @ 10 yr (tive C x A x I (cfs)	$\frac{.63}{\text{ream line}} = \frac{\text{Depth}}{30}$ $\frac{30}{27}$ (C) $(in/hr) = \frac{1}{30}$	ize = 36 x 36 13 HGL 157.99 159.02 = 1.67 = 0.46 = 21.46 = 14.10 = 5.60 = 8.68 = 48.63	(Cir) EGL 158.92 160.19	Nv = 0.013 Area 6.27 5.61 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 7.75 8.66 ert (%) grade lir h (in) nd elev. (rcharge ((cfs) pacity (cfs)	81.0 T-W 2.73 2.63 ne (%) (ft) ft) s)	JLC = 0 2.00 2.62 $= 1.605$ $= 1.560$ $= 27$ $= 162.4$ $= 0.00$ $= 0.00$ $= 84.49$

	Q = 45	.33	Size = 36×36 (Cir) Nv = 0.013 Len = 203.0		Nv = 0.013	Len =	203.0	•	JLC = 0.5	
S-6 TO S	-7 / Downst	ream line =	16							
	Invert	Depth	HGL	EGL	Area	Vel	T-Wi	id	Cover	
Dnstrm Upstrm	157.00 163.00	31 26	159.60 165.15	160.36 166.24	6.52 5.41	6.95 8.38	2.80 2.71		2.42 2.30	
Drainag Runoff c Time of Inlet Tir Intensity Cumulat Q = CA	e area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) ; (C) n) (in/hr)	= 0.83 = 0.61 = 20.33 = 10.00 = 5.73 = 7.91 = 45.33		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow ca	ert (%) y grade li h (in) und elev. urcharge () (cfs) pacity (cl	ne (%) (ft) (ft) fs)		2.956 2.897 26 168.30 0.00 0.00 114.66	
Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) ssed to 12) 2 (cfs)	$= 3.66 \\= 0.00 \\= 3.66 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)	<u>-</u>		0.00 0.04 6.13	
				و هو الله جو کر اور پو پو بو خو خو خو خو خو	، ی جرعے کا کر جربا ہے کہ جر کا کے کا جب جب ا		یہ ہے ان جن جن کا اور طر جو بھر میں خد	ينية حية جار جار		
Line 18	Q = 42.	.82 S	$size = 36 \times 36$	(Cir)	Nv = 0.013	Len =	81.0		LC = 0.50	
Line 18 S-7 TO S-	Q = 42. 8 / Downstr Invert	.82 S ream line = Depth	ize = 36 x 36 17 HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	81.0 		LC = 0.50 Cover	
Line 18 S-7 TO S- Dnstrm Upstrm	Q = 42. 8 / Downstr Invert 163.50 165.40	.82 S ream line = Depth 26 25	Fize = 36 x 36 17 HGL 165.69 167.49	(Cir) EGL 166.62 168.52	Nv = 0.013 Area 5.53 5.24	Len = Vel 7.74 8.17	81.0 T-Wie 2.56 2.76		LC = 0.50 Cover 1.80 2.00	
Line 18 S-7 TO S- Dnstrm Upstrm Drainage Runoff c Time of c Inlet Tim Intensity Cumulati Q = CA 2	Q = 42. 8 / Downstr Invert 163.50 165.40 e area (ac) oefficient conc. (min (min) (@ 10 yr (ive C x A x I (cfs)	$\frac{.82}{\text{ream line}} = \frac{\text{Depth}}{26}$ $\frac{26}{25}$ (C) (in/hr)	Size = 36×36 17 HGL 165.69 167.49 = 1.39 = 0.46 = 19.88 = 10.00 = 5.78 = 7.40 = 42.82	(Cir) EGL 166.62 168.52	Nv = 0.013 Area 5.53 5.24 Slope of inve Slope energy Critical depth Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 7.74 8.17 ert (%) grade lin n (in) nd elev. (rcharge ((cfs) pacity (cfs)	81.0 T-Wi 2.56 2.76 ne (%) (ft) ft) s)	 di 	Cover 1.80 2.00 2.346 2.344 25 170.40 0.00 102.15	

Line 19	ne 19 $Q = 4.38$		$Size = 18 \times 18$	(Cir)	ir) $Nv = 0.013$		235.0	JLC = 0.5	
S-8 TO S	-8A / Down	stream line	e = 18						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Cover	
Dnstrm Upstrm	166.00 172.50	18 10	168.00 173.30	168.10 173.62	1.77 0.96	2.48 4.58	0.00 1.50	2.90 2.33	
Drainag Runoff Time of Inlet Tir Intensity Cumula Q = CA	ge area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	$= 1.21 \\= 0.50 \\= 10.00 \\= 10.00 \\= 7.24 \\= 0.61 \\= 4.38$		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional C Full-flow ca	ert (%) y grade li h (in) nd elev. rcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) ⁽ s)	= 2.766 = 2.352 = 10 = 176.33 = 0.00 = 0.00 = 17.46	
Q Catch Q Carry Q Captu Q Bypas	ument (cfs) over (cfs) ured (cfs) ssed to 18) 5 (cfs)	$= 4.38 \\= 0.00 \\= 4.38 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 6.90	
Line 20	Q = 36.	29	$Size = 30 \times 30$	(Cir)	Nv = 0.013	Len =	164.0	JLC = 0.50	
5-8 10 5-	-9 / Downstr	eam line =	- 18						
	Invert	Depth	HGL	EGL	Area	Vel	T-Wi	d Cover	
Dnstrm Upstrm	165.50 168.00	Depth 30 24	HGL 168.00 170.01	EGL 168.85 171.15	Area 4.91 4.24	Vel 7.39 8.57	T-Wi 0.00 1.98	d Cover 2.40 2.44	
Dnstrm Upstrm Drainage Runoff c Time of Inlet Tim Intensity Cumulat Q = CA 2	165.50 168.00 e area (ac) coefficient conc. (min) (@ 10 yr) ive C x A x I (cfs)	Depth 30 24 (C) 1) (in/hr)	HGL 168.00 170.01 = 0.72 = 0.59 = 18.97 = 13.50 = 5.89 = 6.16 = 36.29	EGL 168.85 171.15	Area 4.91 4.24 Slope of inve Slope energy Critical deptl Natural grou Upstream su Additional Q Full-flow cap	Vel 7.39 8.57 ert (%) grade lir n (in) nd elev. (rcharge (; (cfs) pacity (cfs	T-Wi 0.00 1.98 ne (%) (ft) ft) s)	d Cover 2.40 2.44 = 1.524 = 1.403 = 24 = 172.94 = 0.00 = 0.00 = 50.64	

7/

Line 21	<u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	.16	$Size = 36 \times 36$	(Cir)	Nv = 0.013	Len =	94.0	JLC = 0.5
S-9 TO S	-10 / Down	stream lin	e = 20					
	Invert	Deptl	h HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	168.50 170.50	25 22	170.58 172.36	171.24 173.21	5.24 4.61	6.52 7.41	2.50 2.91	1.44 2.83
Drainag Runoff Time of Inlet Tir Intensity Cumula Q = CA Q Catch Q Catch Q Carry Q Captu O Bypas	e area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs) ment (cfs) over (cfs) ared (cfs)) t (C) n) (in/hr)	= 0.44 = 0.55 = 18.44 = 10.00 = 5.96 = 5.73 = 34.16 = 1.75 = 0.00 = 1.75 = 0.00		Slope of inv Slope energ Critical dep Natural grou Upstream su Additional (Full-flow ca Gutter slope Cross slope Width of Flo	ert (%) y grade li th (in) und elev. urcharge (2 (cfs) pacity (cf (ft/ft) (ft/ft) w (ft)	ne (%) (ft) (ft) (s)	$= 2.128 \\= 2.097 \\= 22 \\= 176.33 \\= 0.00 \\= 0.00 \\= 97.28 \\= 0.00 \\= 0.04 \\= 3.74$
F==								
Line 22	Q = 32.	.85 Instream lin	Size = 30×30 we = 21	(Cir) N	Nv = 0.013	Len = .	36.0 	JLC = 0.5
Line 22 S-10 TO S	Q = 32. -11 / Down Invert	.85 Instream lin Depth	Size = 30×30 e = 21 HGL	(Cir) N EGL	Nv = 0.013 Area	Len = . Vel	36.0 T-Wi	JLC = 0.5
Line 22 S-10 TO S Dastrm	Q = 32. -11 / Down Invert 171.00 171.40	.85 Instream lin Depth 20 20	Size = 30×30 He = 21 HGL 172.65 173.05	(Cir) N EGL 174.06 174.46	Nv = 0.013 Area 3.45 3.45	Len = . Vel 9.53 9.53	36.0 T-Wi 2.37 2.37	JLC = 0.5 d Cover 2.83 1.98
Line 22 	Q = 32. $Invert$ $Invert$ 171.00 171.40 $e area (ac)$ $oefficient$ $conc. (min)$ $@ 10 yr (area)$ $Ve C x A$ $x I (cfs)$.85 Istream lin Depth 20 20 (C) 1) (in/hr)	Size = 30×30 HGL 172.65 173.05 = 1.44 = 0.47 = 18.24 = 10.00 = 5.98 = 5.49 = 32.85	(Cir) N EGL 174.06 174.46 S S C N U A F	Area 3.45 3.45 3.45 Slope of inve Slope energy Critical dept Vatural grou Upstream su Additional Q ull-flow cap	Len = Vel 9.53 9.53 ert (%) 9 grade lin h (in) nd elev. (rcharge (1 (cfs) pacity (cfs)	36.0 T-Wi 2.37 2.37 ne (%) ft) ft)	JLC = 0.5 d Cover 2.83 1.98 $= 1.111$ $= 1.111$ $= 23$ $= 175.88$ $= 0.00$ $= 0.00$ $= 43.23$

. . . .

, , . .

. .

. . , ,

, ,

. .

, .

. .

. .

• ,

. .

•----

	Q = 2.	70	Size = 18 x 18	8 (Cir)	Nv = 0.013	Len =	310.0	JLC = 0.50
S-11 T0 S	S-11A / Dov	vnstream l	ine = 22					
	Invert	Deptł	h HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	171.88 184.50	18 8	173.76 185.13	173.80 185.36	1.77 0.70	1.53 3.86	0.00 1.48	2.50 2.70
Drainag Runoff o Time of Inlet Tin Intensity Cumulat Q = CA	e area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) t (C) n) (in/hr)	= 0.76 = 0.49 = 10.00 = 10.00 = 7.24 = 0.37 = 2.70		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li h (in) nd elev. rcharge () (cfs) pacity (cf	ne (%) (ft) (ft) fs)	= 4.071 = 3.730 = 8 = 188.70 = 0.00 = 0.00 = 21.19
Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) ssed to 22) 2 (cfs)	$= 2.70 \\= 0.00 \\= 2.70 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 4.99
Line 24	Q = 27.	.16	$Size = 30 \times 30$	(Cir)	Nv = 0.013	Len =	183.0	JLC = 0.50
Line 24 3-11 TO S	Q = 27. -12 / Down Invert	16stream lin Depth	Size = 30 x 30 e = 22 . HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	183.0 	JLC = 0.50
Line 24 	Q = 27. -12 / Down Invert 171.50 174.00	.16 Istream lin Depth 27 21	Size = 30 x 30 e = 22 HGL 173.76 175.74	(Cir) EGL 174.29 176.60	Nv = 0.013 Area 4.67 3.65	Len = Vel 5.82 7.44	183.0 T-Wi 2.38 2.30	JLC = 0.50 d Cover 1.88 1.78
Line 24 S-11 TO S Dostrm Upstrm Drainage Runoff of Callet Tim Intensity Cumulati Q = CA >	Q = 27. Invert Invert I71.50 I74.00 area (ac) oefficient conc. (min (min) (16 Istream lin Depth 27 21 (C) 1) (in/hr)	Size = 30×30 e = 22 HGL 173.76 175.74 = 0.72 = 0.51 = 17.23 = 10.00 = 6.11 = 4.44 = 27.16	(Cir) EGL 174.29 176.60	Nv = 0.013 Area 4.67 3.65 Slope of inve Slope energy Critical depth Natural grou Upstream sun Additional Q Full-flow cap	Len = Vel 5.82 7.44 ort (%) grade lin n (in) nd elev. (ccharge ((cfs) acity (cfs)	183.0 T-Wi 2.38 2.30 ne (%) (ft) ft) s)	JLC = 0.50 d Cover 1.88 1.78 = 1.366 = 1.265 = 21 = 178.28 = 0.00 = 0.00 = 47.94

Line 25	Q = 25	.16 S	$ize = 24 \times 24$	(Cir)	Nv = 0.013	Len =	81.0	JLC = 0.50
S-12 TO	S-13 / Down	nstream line	= 24					
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	174.20 176.50	24 22	176.17 178.30	177.17 179.41	3.13 2.98	8.03 8.44	1.99 1.20	2.08 3.00
Drainag Runoff Time of Inlet Tin Intensity Cumula Q = CA	ge area (ac) coefficient f conc. (mit me (min) y @ 10 yr tive C x A . x I (cfs)) (C) n) (in/hr)	= 0.72 = 0.50 = 16.78 = 10.00 = 6.17 = 4.08 = 25.16		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge () (cfs) pacity (cf	ne (%) (ft) (ft) Ss)	= 2.840 = 2.760 = 22 = 181.50 = 0.00 = 0.00 = 38.11
Q Catch Q Carry Q Captu	nment (cfs) vover (cfs) ured (cfs)) :	= 2.61 = 0.00 = 2.61	(Gutter slope Cross slope	(ft/ft) (ft/ft)		= 0.00 = 0.04
Q Bypas	ssed to 17	(cfs) =	= 0.00		Width of Flo	ow (ft) 		= 4.87
Q Bypas	Q = 23.	(cfs) =	= 0.00 ze = 24 x 24	(Cir) I	Nv = 0.013	Len = :	38.0	= 4.87 JLC = 0.50
Q Bypas Line 26 S-13 TO S	Q = 23. S-16 / Down Invert	(cfs) = 04 Si stream line = Depth	= 0.00 ze = 24 x 24 = 25 HGL	(Cir) M	Width of Flo	Dev (ft) Len = 1 Vel	38.0 T-Wi	= 4.87 JLC = 0.50
Q Bypas Line 26 3-13 TO S Dnstrm Jpstrm	Q = 23. Q = 23. S-16 / Down Invert 177.00 177.50	(cfs) = 04 Si stream line = Depth 22 20	$= 0.00$ $ze = 24 \times 24$ $= 25$ HGL 178.85 179.20	(Cir) N EGL 179.75 180.22	Width of Flo Nv = 0.013 Area 3.04 2.85	Len = 2 Vel 7.58 8.10	38.0 T-Wi 1.93 1.43	= 4.87 JLC = 0.50 id Cover 2.50 2.00
Q Bypas Line 26 S-13 TO S Donstrm Upstrm Drainage Runoff c Time of c Inlet Time Intensity Cumulati Q = CA 2	Q = 23. $Q = 23.$ S-16 / Down Invert 177.00 177.50 e area (ac) coefficient (conc. (min le (min)) (@ 10 yr (ive C x A x I (cfs))	04 Sir 04 Sir stream line = Depth 22 20 (C) = in/hr) = = =	$= 0.00$ $ze = 24 \times 24$ $= 25$ HGL 178.85 179.20 $= 0.34$ $= 0.53$ $= 16.57$ $= 10.00$ $= 6.20$ $= 3.72$ $= 23.04$	(Cir) N EGL 179.75 180.22 S C N U A F	Nv = 0.013 Area 3.04 2.85 Slope of inve Slope energy Critical depth Vatural grou Jpstream sur Additional Q Full-flow cap	Len = : Vel 7.58 8.10 rt (%) grade lim n (in) nd elev. (rcharge (f (cfs) acity (cfs	38.0 T-Wi 1.93 1.43 i.e (%) ft) t)	JLC = 0.50 $JLC = 0.50$ 2.50 2.00 $= 1.316$ $= 1.239$ $= 20$ $= 181.50$ $= 0.00$ $= 0.00$ $= 25.94$

Line 27	Q = 10).37	$Size = 24 \times 24$	(Cir)	Nv = 0.013	Len =	101.0		JLC = 0.50
S-16 TO :	S-17 / Dow	nstream li	ne = 26						
	Invert	Depth	n HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	178.00 180.50	21 14	179.71 181.64	179.91 182.13	2.86 1.85	3.63 5.60	1.85 1.98		1.50 1.86
Drainag Runoff of Time of Inlet Tim Intensity Cumulat Q = CA	te area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) ; (C) n) (in/hr)	= 0.43 = 0.60 = 16.01 = 10.00 = 6.28 = 1.65 = 10.37		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge () (cfs) pacity (cf	ne (%) (ft) (ft) S)		2.475 2.193 14 184.36 0.00 0.00 35.58
Q Catch Q Carryo Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) sed to 17) ' (cfs)	= 1.87 = 0.00 = 1.87 = 0.00	****	Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)			0.00 0.04 3.90
Line 28	Q = 4.3	3	Size = 18 x 18	(Cir)	Nv = 0.013	Len = 4	44.0	J	LC = 0.50
5-17 10 5	Invert	Depth	ne = 27 HGL	EGL	Area	Vel	T-W i	id	Cover
Dnstrm Upstrm	181.28 181.50	10 10	182.07 182.35	182.40 182.62	0.95 1.03	4.56 4.21	1.09 1.49		1.58 2.34
Drainage	area (ac)	(\mathbf{C})	= 1.33 = 0.45	1	Slope of inve	rt (%) grade lin	e (%)	=	0.500 0.512
Runoff co Time of co Inlet Time Intensity Cumulation Q = CA x	conc. (min e (min) @ 10 yr (ve C x A t I (cfs)) in/hr)	$= 10.00 \\= 10.00 \\= 7.24 \\= 0.60 \\= 4.33$	i I I I I I I I I I I I I I I I I I I I	Critical depth Natural groun Jpstream sun Additional Q Full-flow cap	nd elev. (i rcharge (f (cfs) acity (cfs	ft) t)		10 185.34 0.00 0.00 7.43

Line 29	$\mathbf{Q}=5.1$	11	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	181.0	JLC = 0.50
S-17 TO :	S-18 / Down	nstream lin	e = 27					
	Invert	Depth	HGL	EGL	Area	Vel	T-Wi	d Cover
Dnstrm Upstrm	180.80 188.50	13 10	181.88 189.36	182.10 189.73	1.37 1.05	3.74 4.86	1.28 1.48	2.06 2.26
Drainag Runoff Time of Inlet Tir Intensity Cumula Q = CA	ge area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	= 1.73 = 0.46 = 15.00 = 15.00 = 6.42 = 0.80 = 5.11		Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	ert (%) y grade li h (in) und elev. urcharge () (cfs) pacity (cf	ne (%) (ft) (ft) (s)	= 4.254 = 4.214 = 10 = 192.26 = 0.00 = 0.00 = 21.66
Q Catch Q Carry Q Captu Q Bypas	oment (cfs) over (cfs) ored (cfs) ssed to 24) (cfs)	$= 5.11 \\= 0.00 \\= 5.11 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 7.65
Line 30	Q = 12.	85	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	160.0	JLC = 0.50
S-14 TO S	S-14A / Dov Invert	vnstream l Depth	ne = 26	FOI				
Ductron			non	ĽGL	Area	Vel	T-Wic	l Cover
Jpstrm	178.00 182.00	18 16	179.71 183.37	EGL 180.53 184.26	Area 1.77 1.69	Vel 7.27 7.58	T-Wic 0.00 0.84	2.00 4.10
Upstrm Drainage Runoff c Time of Inlet Tim Intensity Cumulat Q = CA :	178.00 182.00 e area (ac) coefficient conc. (min ne (min) r @ 10 yr (ive C x A x I (cfs)	18 16 (C) 1) (in/hr)	179.71 183.37 $= 1.30$ $= 0.49$ $= 12.39$ $= 10.00$ $= 6.82$ $= 1.88$ $= 12.85$	180.53 184.26	1.77 1.69 Slope of inve Slope energy Critical depth Natural grou Upstream sun Additional Q Full-flow cap	Vel 7.27 7.58 ert (%) grade lir n (in) nd elev. (rcharge ((cfs) pacity (cfs)	0.00 0.84 ne (%) ft) ft) s)	Cover 2.00 4.10 = 2.500 = 2.335 = 16 = 187.60 = 0.00 = 0.00 = 16.60

	Q = 8.7	77	$Size = 18 \times 18$	(Cir)	Nv = 0.013	Len =	225.0	•	$\underline{\text{JLC}} = 0.5$
) S-15 / Dov	wnstream	line $= 30$						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id	Cover
Dnstrm Upstrm	183.00 190.00	9 9	183.73 190.73	185.35 192.35	0.86 0.86	10.19 10.19	1.50 1.50		3.10 3.20
Drainag Runoff Time of Inlet Tir Intensity Cumula Q = CA	e area (ac) coefficient conc. (min ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	= 1.36 = 0.42 = 11.14 = 10.00 = 7.03 = 1.25 = 8.77		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) Ss)		3.111 3.111 14 194.70 0.00 0.00 18.52
Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) ssed to 17	(cfs)	= 4.13 = 0.00 = 4.13 = 0.00		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		=	0.00 0.04 6.64
					بهه ها باز بن چه ه ه چه به به من به به شا بن ه.				
Line 32	Q = 3.5	8	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	205.0	J	LC = 0.50
Line 32 	Q = 3.5 -15A / Dow Invert	8 vnstream 1 Depth	Size = 18 x 18 ine = 31 HGL	(Cir) EGL	Nv = 0.013 Area	Len = : Vel	205.0 	J 	LC = 0.50
Line 32 S-15 TO S Dnstrm Upstrm	Q = 3.5 -15A / Dow Invert 190.50 197.00	8 Vnstream I Depth 12 9	Size = 18×18 ine = 31 HGL 191.54 197.72	(Cir) EGL 191.66 198.00	Nv = 0.013 Area 1.31 0.84	Len = 2 Vel 2.74 4.26	205.0 T-Wi 1.25 1.50	J d	LC = 0.50 Cover 2.70 2.15
Line 32 S-15 TO S Dnstrm Upstrm Drainage Runoff c Time of c Inlet Tim Intensity Cumulati Q = CA 2	Q = 3.5 $-15A / Dow$ Invert 190.50 197.00 e area (ac) oefficient (conc. (min)) (a) 10 yr (min)) (b) 2 10 yr (min)) (b) C x A (conc) (co	8 vnstream I Depth 12 9 (C) ()	Size = 18×18 inc = 31 HGL 191.54 197.72 = 0.90 = 0.55 = 10.00 = 10.00 = 7.24 = 0.50 = 3.58	(Cir) EGL 191.66 198.00	Nv = 0.013 Area 1.31 0.84 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = 2 Vel 2.74 4.26 ert (%) grade lin h (in) nd elev. (rcharge (1 cfs) pacity (cfs	205.0 T-Wi 1.25 1.50 ne (%) ft) ft) ft)	J d = = = =	LC = 0.50 Cover 2.70 2.15 3.171 3.096 9 200.65 0.00 0.00 18.70

Line 33	Q = 1.3	50	$Size = 18 \times 18$	(Cir)	Nv = 0.013	Len =	28.0	JLC	= 0.5
S-15 TO :	S-16 / Down	nstream lin	e = 31						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id	Cover
Dnstrm Upstrm	191.00 191.20	6 5	191.54 191.64	191.62 191.78	0.57 0.43	2.27 3.06	0.90 1.36	2.: 2.(20 00
Drainag Runoff Time of Inlet Tir Intensity Cumula Q = CA	ge area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	$= 0.34 \\= 0.53 \\= 10.00 \\= 10.00 \\= 7.24 \\= 0.18 \\= 1.30$		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow ca	ert (%) y grade li h (in) und elev. urcharge () (cfs) pacity (cf	ne (%) (ft) (ft) fs)	= 0.3 = 0.3 = 5 = 19 = 0.0 = 0.0 = 8.3	714 572 94.70 00 00 38
Q Catch Q Carry Q Captu	ment (cfs) over (cfs) ured (cfs))	= 1.30 = 0.00 = 1.30	·	Gutter slope Cross slope	(ft/ft) (ft/ft)	R = = = = = = = = = = = = = = = = = = =	= 0.0 = 0.0 = 3.0)0)4)7
Q Bypas	ssed to 17	(cfs)	= 0.00			w (II)		J.(-
Q Bypas	Q = 3.1	3 S	= 0.00	(Cir)	Nv = 0.013	Len =	27.0	JLC	= 0.50
Q Bypas Line 34 S-24 TO S	Q = 3.1 Q = 3.1 S-25 / Down Invert	(cfs) 3 S stream line Depth	= 0.00 Size = 18 x 18 $= 4$ HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	27.0 	л.с 	- = 0.50
Q Bypas Line 34 3-24 TO S Dnstrm Jpstrm	Q = 3.1 Q = 3.1 S-25 / Down Invert 145.00 146.00	3 S stream line Depth 18 8	= 0.00 Size = 18 x 18 $= 4$ HGL 146.79 146.68	(Cir) EGL 146.84 146.93	Nv = 0.013 Area 1.77 0.78	Len = Vel 1.77 4.00	27.0 T-Wi 0.00 1.49	JLC id (3.5 2.3	-
Q Bypas Line 34 S-24 TO S Dostrm Upstrm Drainage Runoff c Time of c Inlet Time Intensity Cumulati Q = CA 2	Q = 3.1 $Q = 3.1$ $S-25 / Down$ Invert 145.00 146.00 e area (ac) coefficient conc. (min) (a) 10 yr (ive C x A) x I (cfs)	3 S stream line Depth 18 8 (C) (in/hr)	= 0.00 Size = 18 x 18 $= 4$ HGL 146.79 146.68 $= 0.94$ $= 0.46$ $= 10.00$ $= 10.00$ $= 7.24$ $= 0.43$ $= 3.13$	(Cir) EGL 146.84 146.93	Nv = 0.013 Area 1.77 0.78 Slope of inve Slope energy Critical depth Natural grou Upstream sur Additional Q Full-flow cap	Len = Vel 1.77 4.00 ert (%) grade lin n (in) nd elev. (rcharge (1 (cfs) pacity (cfs)	27.0 T-Wi 0.00 1.49 ne (%) (ft) ft) s)	JLC JLC 3.5 2.3 $= 3.7$ $= 0.3$ $= 149$ $= 0.0$ $= 0.0$ $= 20.$	= 0.50 $= 0.50$ Cover 0 7 7 7 0 46 9.87 0 0 21

I	<u> </u>	.28	Size = 36 x 36	(Cir)	Nv = 0.013	Len =	94.0		$\underline{JLC} = 0.5$
S-27 TO	S-28 / Down	nstream line	e = 6						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	151.00 154.50	27 26	153.24 156.69	154.32 157.83	5.67 5.53	8.34 8.55	2.59 2.66		3.00 2.66
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA Q Catch Q Catch Q Carry Q Captu Q Bypa	ge area (ac coefficient f conc. (mi me (min) y @ 10 yr trive C x A x I (cfs) ment (cfs) vover (cfs) ured (cfs) ssed to 9) (C) n) (in/hr) (cfs)	= 0.63 = 0.56 = 28.79 = 10.00 = 4.90 = 9.65 = 47.28 = 2.55 = 0.00 = 2.55 = 0.00		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional (Full-flow ca Gutter slope Cross slope Width of Flo	ert (%) y grade li h (in) and elev. archarge (2 (cfs) pacity (cf (ft/ft) (ft/ft) ww (ft)	ne (%) (ft) (ft) `s)		3.723 3.726 26 160.16 0.00 0.00 128.69 0.00 0.04 4.81
88 AL 49 AT 19 - A - La -									
Line 36	Q = 3.5 S-29 / Down	5 S stream line	$ize = 18 \times 18$ $= 35$	(Cir)	Nv = 0.013	Len =	28.0	j	TLC = 0.50
Line 36 5-28 TO S Dnstrm Upstrm	Q = 3.5 S-29 / Down Invert 156.00 156.50	5 S Istream line Depth 15 9	ize = 18 x 18 = 35 HGL 157.26 157.22	(Cir) EGL 157.34 157.50	Nv = 0.013 Area 1.58 0.84	Len = Vel 2.24 4.24	28.0 T-W 1.37 1.50	J	TLC = 0.50 Cover 2.66 2.16
Line 36 S-28 TO S Dostrm Upstrm Drainage Runoff of Inlet Tin Intensity Cumulat Q = CA	Q = 3.5 S-29 / Down Invert 156.00 156.50 e area (ac) coefficient conc. (mir ne (min) y @ 10 yr (tive C x A x I (cfs)	5 S astream line Depth 15 9 (C) a) (in/hr)	$ize = 18 \times 18$ $= 35$ HGL 157.26 157.22 $= 1.00$ $= 0.49$ $= 10.00$ $= 7.24$ $= 0.49$ $= 3.55$	(Cir) EGL 157.34 157.50	Nv = 0.013 Area 1.58 0.84 Slope of inve Slope energy Critical depth Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 2.24 4.24 ert (%) grade lin h (in) nd elev. (rcharge ((cfs) pacity (cfs)	28.0 T-W 1.37 1.50 ne (%) ft) ft) ft)	/id	Cover 2.66 2.16 1.786 0.577 9 160.16 0.00 0.00 14.03

	Q = 43	.48	$Size = 34 \times 53$	(Ell)	Nv = 0.013	Len =	81.0		$\Pi LC = 0.50$
S-28 TO :	S-30 / Down	nstream lin	e = 35						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	155.36 158.10	10 0	156.21 158.95	160.74 163.48	2.55 2.55	17.08 17.08	0.00 0.00		1.97 2.07
Drainag Runoff o Time of Inlet Tin Intensity Cumulat Q = CA	e area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	= 0.98 = 0.46 = 28.34 = 10.00 = 4.94 = 8.81 = 43.48		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade lin th (in) und elev. urcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) (s)		3.383 3.383 24 163.00 0.00 0.00 211.67
Q Catch Q Carry Q Captu	ment (cfs) over (cfs) red (cfs))	= 3.26 = 0.00 = 3.26 = 0.00		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft)		=	0.00 0.04 4.25
Q Dypas		(CIS)	- 0.00						
Line 38	Q = 6.6	(CIS) 5 5	Size = 18 x 18	(Cir)	Nv = 0.013	Len = 1	176.0	 J	LC = 0.50
Line 38	Q = 6.6	(CIS) 5 S	Size = 18×18 ne = 37	(Cir)	Nv = 0.013	Len = 1	176.0	J	LC = 0.50
Line 38	Q = 6.6 -30A / Dow Invert	(CIS) 5 S /nstream lin Depth	Size = 18×18 ne = 37 HGL	(Cir) EGL	Nv = 0.013 Area	Len = : Vel	176.0 T-W	J /id	LC = 0.50
Line 38 3-30 TO S Dostrm	Q = 6.6 -30A / Dow Invert 158.00 160.00	(CIS) 5 S mstream lii Depth 18 18	Size = 18×18 ne = 37 HGL 161.22 161.92	(Cir) EGL 161.44 162.14	Nv = 0.013 Area 1.77 1.77	Len = 1 Vel 3.77 3.77	176.0 T-W 0.00 0.00	J	LC = 0.50 Cover 3.50 2.83
Line 38 Line 38 S-30 TO S Dustrm Drainage Runoff co Intensity Cumulati Q = CA 3	Q = 6.6 $Q = 6.6$ $A = 0.00$	(CIS) 5 S Anstream lit Depth 18 18 (C)) in/hr)	$Size = 18 \times 18$ $Size = 18 \times 18$ HGL 161.22 161.92 = 0.89 = 0.48 = 10.92 = 10.00 = 7.07 = 0.94 = 6.65	(Cir) EGL 161.44 162.14	Nv = 0.013 Area 1.77 1.77 Slope of inve Slope energy Critical deptl Natural grou Upstream sur Additional Q Full-flow cap	Len = Vel 3.77 3.77 ert (%) grade lin h (in) nd elev. (fright of the second sec	176.0 T-W 0.00 0.00 e (%) ft) ft) t)	J /id = = = = =	LC = 0.50 Cover 3.50 2.83 1.136 0.402 12 164.33 0.42 0.00 11.19

	Line 39	Q = 3.7	72 5	Size = 18×18	(Cir)	Nv = 0.013	Len =	165.0	J	$\Gamma LC = 0.50$
•	S-30A TC) S-30B / D	ownstream	line = 38						
		Invert	Depth	HGL	EGL	Area	Vel	T-W	id	Cover
•	Dnstrm Upstrm	160.33 161.65	18 9	162.03 162.39	162.10 162.67	1.77 0.87	2.10 4.26	0.00 1.50		2.50 2.50
· · · · · · · · · · · · · · · · · · ·	Drainag Runoff of Time of Inlet Tin Intensity Cumula Q = CA	e area (ac) coefficient conc. (min ne (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	= 1.07 = 0.48 = 10.00 = 10.00 = 7.24 = 0.51 = 3.72		Slope of inv Slope energ Critical dep Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge (Q (cfs) pacity (cf	ne (%) (ft) (ft) ĵs)		0.800 0.347 9 165.65 0.00 0.00 9.39
• •	Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) ssed to 38	(cfs)	$= 3.72 \\= 0.00 \\= 3.72 \\= 0.00$		Gutter slope Cross slope Width of Flo	: (ft/ft) (ft/ft) ow (ft)		=	0.00 0.04 6.18
	Line 40	Q = 37.	42 S	lize = 36 x 36	(Cir)	Nv = 0.013	Len =	226.0	J	LC = 0.50
	S-30 TO S	-31 / Down	stream line	= 37						
		Invert	Depth	HGL	EGL	Area	Vel	T-Wi	d	Cover
•	Dnstrm Upstrm	158.20 168.50	36 23	161.22 170.45	161.65 171.37	7.07 4.86	5.30 7.70	0.00 2.86		1.80 5.02
· · · · · · · · · · · · · · · · · · ·	Drainage Runoff c Time of c Inlet Tim Intensity Cumulati Q = CA x	e area (ac) oefficient conc. (min le (min) @ 10 yr (ive C x A x I (cfs)	(C)) in/hr)	= 0.26 = 0.49 = 27.09 = 10.00 = 5.05 = 7.42 = 37.42		Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	ert (%) y grade lir h (in) and elev. (rcharge ((cfs) pacity (cfs	ne (%) (ft) ft) s)		4.558 4.300 23 176.52 0.00 0.00 142.38
	Q Catchr Q Carryo Q Captur Q Bypass	nent (cfs) over (cfs) red (cfs) sed to 36	(cfs)	$= 0.92 \\= 0.00 \\= 0.92 \\= 0.00$		Gutter slope Cross slope (Width of Flo	(ft/ft) (ft/ft) w (ft)		=	0.00 0.04 2.43

Line 41	Q = 12	2.35	Size = 24×2	4 (Cir)	Nv = 0.013	Len =	2 10.0	JLC = 0.5
S-31 TO S	S-32 / Dow	nstream lin	ae = 40					
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	169.20 170.30	21 15	170.91 171.55	171.20 172.10	2.86 2.07	4.32 5.96	1.85 1.93	5.32 2.40
Drainag Runoff of Time of Inlet Tin Intensity Cumulat Q = CA	e area (ac coefficient conc. (mi ne (min) y @ 10 yr ive C x A x I (cfs)	e) t (C) n) (in/hr)	= 0.43 = 0.63 = 11.25 = 10.00 = 7.01 = 1.76 = 12.35		Slope of inv Slope energ Critical dep Natural gro Upstream s Additional (Full-flow ca	vert (%) sy grade li oth (in) und elev. urcharge (Q (cfs) opacity (cf	ne (%) (ft) (ft) ⁽ s)	$= 0.524 \\= 0.431 \\= 15 \\= 174.70 \\= 0.00 \\= 0.00 \\= 16.37$
Q Catchi Q Carryo Q Captur Q Bypas	ment (cfs) over (cfs) red (cfs) sed to 0) (cfs)	$= 1.96 \\= 0.00 \\= 1.96 \\= 0.00$		Gutter slope Cross slope Width of Fl	e (ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 3.02
Line 42	Q = 10.	52 5	Size = 14 x 23	(Ell)	Nv = 0.013	Len = :	51.0	JLC = 0.50
5-52 10 5-	Invert	Depth	= 41 HGL	EGL	Area	Vel	T-Wi	d Cover
Dnstrm Upstrm	171.18 171.44	10 0	172.00 172.26	173.01 173.27	1.30 1.30	8.09 8.09	0.00 0.00	2.35 1.99
Drainage Runoff co Fime of co nlet Time ntensity (Cumulativ Q = CA x	area (ac) befficient (onc. (min e (min) @ 10 yr (we C x A I (cfs)	(C)) in/hr)	= 2.09 = 0.47 = 10.97 = 10.00 = 7.06 = 1.49 = 10.52	S C N U F	Slope of inve Slope energy Critical dept Natural grou Jpstream su Additional Q Full-flow cap	ert (%) y grade lin h (in) nd elev. (; rcharge (f (cfs) pacity (cfs	e (%) ft) t)	= 0.510 = 0.510 = 14 = 174.60 = 0.00 = 0.00 = 8.40
2 Catchm 2 Carryov 2 Capture	ent (cfs) ver (cfs) ed (cfs)	 - - - -	= 7.11 = 0.00 = 7.11	 C C	Sutter slope ((ft/ft) ft/ft)	. 4 5 6 ₁₄ 6 6 14 5 14 5 14 5 14 5 14 5 14 5 14 5	= 0.00 = 0.04

Line 43	Q = 3.	.67	$Size = 18 \times 18$	(Cir)	Nv = 0.013	Len =	174.0	JLC = 0.50
S-33 TO	S-33A / Do	wnstream	line = 42					
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id Cover
Dnstrm Upstrm	171.50 173.40	15 9	172.76 174.13	172.85 174.42	1.59 0.86	2.31 4.29	1.38 1.50	1.60 2.50
Drainag Runoff of Time of Inlet Tin Intensity Cumulat Q = CA	ge area (ac coefficient conc. (mi ne (min) y @ 10 yr tive C x A x I (cfs)	e) t (C) n) (in/hr)	$= 1.08 \\= 0.47 \\= 10.00 \\= 10.00 \\= 7.24 \\= 0.51 \\= 3.67$		Slope of inv Slope energ Critical dept Natural grou Upstream su Additional (Full-flow ca	ert (%) y grade li th (in) und elev. urcharge (2 (cfs) pacity (cf	ne (%) (ft) (ft) (s)	$= 1.092 \\= 0.902 \\= 9 \\= 177.40 \\= 0.00 \\= 0.00 \\= 10.97$
Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) ssed to 42) 2 (cfs)	$= 3.67 \\= 0.00 \\= 3.67 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0.00 = 0.04 = 6.14
Line 44	Q = 28.	15 S	Size = 36×36	(Cir)	Nv = 0.013	Len = 9	92.0	JLC = 0.50
	Invert	Depth	HGL	EGL	Area	Vel	T-Wie	d Cover
Dnstrm Upstrm	171.00 174.80	11	171.96	175.00				
-		11	175.76	175.23	1.94 1.94	14.51 14.51	2.80 2.80	2.52 2.40
Drainage Runoff co Time of c nlet Time ntensity (Cumulativ) = CA x	area (ac) pefficient (conc. (min e (min) @ 10 yr (we C x A : I (cfs)	(C)) in/hr)	175.76 = 0.99 = 0.53 = 26.58 = 10.00 = 5.09 = 5.53 = 28.15	175.23 179.03	1.94 1.94 Slope of inve Slope energy Critical depth Natural groun Upstream sur Additional Q Full-flow cap	14.51 14.51 rt (%) grade line (in) nd elev. (f charge (f (cfs) acity (cfs)	2.80 2.80 e (%) t)	$2.52 \\ 2.40$ $= 4.130 \\ = 4.130 \\ = 20 \\ = 180.20 \\ = 0.00 \\ = 0.00 \\ = 135.54$

	Q = 25	5.61 5	$Size = 36 \times 36$	6 (Cir)	Nv = 0.013	Len =	= 54.0		JLC = 0.50
S-34 TO S	S-35 / Dow	nstream line	;= 44						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	175.00 175.40	29 23	177.39 177.35	177.67 177.78	6.04 4.87	4.24 5.26	2.68 2.86		2.20 2.06
Drainag Runoff of Time of Inlet Tin Intensity Cumulat Q = CA	e area (ac coefficient conc. (mi ne (min) y @ 10 yr cive C x A x I (cfs)) t (C) n) (in/hr)	= 0.16 = 0.60 = 26.28 = 10.00 = 5.12 = 5.00 = 25.61		Slope of inv Slope energ Critical dep Natural grou Upstream su Additional (Full-flow ca	rert (%) y grade li th (in) und elev. urcharge (Q (cfs) pacity (cf	ne (%) (ft) (ft) ſs)		0.741 0.205 19 180.46 0.00 0.00 57.40
Q Catchi Q Carryc Q Captur Q Bypas	ment (cfs) over (cfs) red (cfs) sed to 42) 2 (cfs)	$= 0.69 \\ = 0.00 \\ = 0.69 \\ = 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		=	0.00 0.04 2.01
ر ور هر به به به حال به ها	، بر ی درون در به ده در ی ک ه ی	***==**===***=	چر ها خان ها کار او ها خان (C + C + C + C + C + C + C + C + C + C	و ی بی در به یا یا یا خان به ها					
Line 46	Q = 25.	74 Si	ze = 30 x 30	(Cir)]	Nv = 0.013	Len = 2	240.0	J.	LC = 0.50
Line 46 	Q = 25. -36 / Down Invert	74 Si stream line Depth	ze = 30 x 30 = 45 HGL	(Cir) I EGL	Nv = 0.013 	Len = 2	 240.0 T-W	J. 	LC = 0.50
Line 46 -35 TO S- Dnstrm Jpstrm	Q = 25. -36 / Down Invert 175.90 185.00	74 Si stream line Depth 12 12	ze = 30 x 30 = 45 HGL 176.88 185.98	(Cir) I EGL 180.14 189.24	Nv = 0.013 Area 1.78 1.78	Len = 2 Vel 14.50 14.50	240.0 T-Wi 2.44 2.44	J.	LC = 0.50 Cover 2.06 6.12
Line 46 5-35 TO S- Dostrm Dostrm Drainage Runoff co Fime of co fine of co nlet Time ntensity (Cumulativ Q = CA x	Q = 25. -36 / Down Invert 175.90 185.00 area (ac) befficient (onc. (min e (min) @ 10 yr (we C x A I (cfs)	74 Si stream line Depth 12 12 (C) = in/hr) = = =	ze = 30 x 30 = 45 HGL 176.88 185.98 = 1.58 = 0.50 = 24.94 = 10.00 = 5.24 = 4.91 = 25.74	(Cir) I EGL 180.14 189.24 S S C N U A F	Nv = 0.013 Area 1.78 1.78 Slope of inve Slope energy Critical depth Vatural groun Jpstream sun Additional Q Full-flow cap	Len = : Vel 14.50 14.50 rt (%) grade lin n (in) nd elev. (fr (cfs) acity (cfs	240.0 T-Wi 2.44 2.44 e (%) ft) t)	J. id = = _ (= _ (LC = 0.50 Cover 2.06 6.12 3.792 3.792 20 193.62 0.00 0.00 79.86

	Q = 7.3	30	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	240.0	JL	C = 0.5
S-36 TO	S-36A / Dov	wnstream l	ne = 46						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id	Cover
Dnstrm Upstrm	185.00 186.10	18 18	187.61 188.77	187.87 189.03	1.77 1.77	4.13 4.13	0.00 0.00	2	7.12 4.80
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA	ge area (ac coefficient f conc. (mi me (min) y @ 10 yr tive C x A x I (cfs)) (C) n) (in/hr)	$= 0.00 \\= 0.00 \\= 10.95 \\= 0.00 \\= 7.07 \\= 1.03 \\= 7.30$		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow ca	ert (%) y grade lis h (in) and elev. prcharge () (cfs) pacity (cf	ne (%) (ft) (ft) (s)	$ \begin{array}{rcl} = & () \\ = & () \\ = & 1 \\ = & 1 \\ = & () \\ = & 7 \\ \end{array} $).458).483 12 192.40 1.17).00 7.11
Q Catch Q Carry Q Captı Q Bypa	nment (cfs) vover (cfs) ured (cfs) ssed to 46) 5 (cfs)	$= 0.00 \\= 0.00 \\= 0.00 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= 0 = 0).00).00).00
				_~					
Line 48	Q = 3.8	3 S	Size = 18×18	(Cir)	Nv = 0.013	Len =	110.0	JL	C = 0.50
Line 48 5-36A TC	Q = 3.8) S-37 / Dov Invert	3 S vnstream lii Depth	Size = 18×18 ne = 47 HGL	(Cir) EGL	Nv = 0.013 	Len = Vel	 110.0 T-Wi	JL	C = 0.50
Line 48 S-36A TC Dnstrm Upstrm	Q = 3.8) S-37 / Dov Invert 185.70 187.50	3 S vnstream li Depth 18 18	Size = 18×18 ne = 47 HGL 188.90 189.00	(Cir) EGL 188.97 189.07	Nv = 0.013 Area 1.77 1.77	Len = Vel 2.17 2.17	110.0 T-Wi 0.00 0.07	JL. id 5 1	C = 0.50 Cover 5.20 .99
Line 48 5-36A TC Dnstrm Upstrm Drainag Runoff of Inlet Tin Intensity Cumulat Q = CA	Q = 3.8 O S-37 / Dov Invert 185.70 187.50 e area (ac) coefficient conc. (min ne (min) / @ 10 yr (tive C x A x I (cfs)	vnstream lii Depth 18 18 (C) 1) (in/hr)	Size = 18×18 HGL 188.90 189.00 = 0.22 = 0.57 = 10.34 = 10.00 = 7.18 = 0.53 = 3.83	(Cir) EGL 188.97 189.07	Nv = 0.013 Area 1.77 1.77 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 2.17 2.17 ert (%) grade lir 1 (in) nd elev. (rcharge ((cfs) pacity (cfs)	110.0 T-Wi 0.00 0.07 ne (%) (ft) ft) s)	$ JL^{4} $ id $ 5 1 = 1 = 0 = 9 = 1 = 0 = 0 = 1 = 0 = 1 =$	C = 0.50 Cover 5.20 .99 .636 .091 90.99 .00 .00 3.43

	Q = 2.9	95 5	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	61.0		JLC = 0.5
S-37 TO	S-38 / Down	nstream line	= 48						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	/id	Cover
Dnstrm Upstrm	187.60 188.00	17 13	189.04 189.06	189.08 189.13	1.74 1.33	1.70 2.22	1.47 1.37		1.89 1.20
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA Q Catch Q Catch Q Catch Q Captu Q Bypas	e area (ac coefficient conc. (min ne (min) y @ 10 yr tive C x A x I (cfs) ment (cfs) over (cfs) ured (cfs) ssed to 23) (C) n) (in/hr)	= 0.85 = 0.48 = 10.00 = 10.00 = 7.24 = 0.41 = 2.95 = 0.00 = 2.95 = 0.00		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional O Full-flow ca Gutter slope Cross slope Width of Flo	ert (%) y grade li h (in) und elev. urcharge () (cfs) pacity (cf (ft/ft) (ft/ft) ow (ft)	ne (%) (ft) (ft) fs)		0.656 0.089 8 190.70 0.00 0.00 8.50 0.00 0.04 5.30
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		، او ها ها کا ک ۱۹ هه او هم با کا بر بن ا				
Line 50 5-36A TC	Q = 3.6 S-36B / Do	51 S	$ize = 18 \times 18$ ine = 47	(Cir)	Nv = 0.013	Len =	32.0	J	LC = 0.50
Line 50 5-36A TC	Q = 3.6 9 S-36B / Do Invert	51 S ownstream 1 Depth	ize = 18 x 18 ine = 47 HGL	(Cir) EGL	Nv = 0.013 Area	Len = Vel	32.0 T-W	J	LC = 0.5( 
Line 50 S-36A TC Dnstrm Upstrm	Q = 3.6 S-36B / Do Invert 187.40 187.60	51 S ownstream 1 Depth 18 16	$ize = 18 \times 18$ ine = 47 HGL 188.90 188.93	(Cir) EGL 188.96 189.00	Nv = 0.013 Area 1.77 1.65	Len = Vel 2.04 2.19	32.0 T-W 1.50 0.96	j	LC = 0.5( Cover 3.50 2.55
Line 50 S-36A TC Dnstrm Upstrm Drainage Runoff c Time of Inlet Tin Intensity Cumulat Q = CA	Q = 3.6 S-36B / Do Invert 187.40 187.60 e area (ac) coefficient conc. (min) m(@ 10 yr ( ive C x A x I (cfs)	il S ownstream I Depth 18 16 (C) n) (in/hr)	$ize = 18 \times 18$ ine = 47 HGL 188.90 188.93 = 1.04 = 0.48 = 10.00 = 10.00 = 7.24 = 0.50 = 3.61	(Cir) EGL 188.96 189.00	Nv = 0.013 Area 1.77 1.65 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 2.04 2.19 ert (%) grade lin h (in) nd elev. ( rcharge ( cfs) pacity (cfs)	32.0 T-W 1.50 0.96 ne (%) (ft) ft) s)	J id = = = =	LC = 0.50 Cover 3.50 2.55 0.625 0.115 9 191.65 0.00 0.00 8.30

Line 51	Q = 10	5.43	$Size = 30 \times 30$	(Cir)	Nv = 0.013	Len =	152.0	- -	$\underline{\text{JLC}=0.5}$
S-36 TO	S-39 / Dow	nstream lin	e = 46						
	Invert	Depth	HGL	EGL	Area	Vel	T-V	Vid	Cover
Dnstrm Upstrm	189.00 194.00	10 10	189.83 194.83	191.92 196.92	1.42 1.42	11.61 11.61	2.35 2.35		2.12 4.81
Drainag Runoff Time of Inlet Tin Intensit Cumula Q = CA Q Catcl Q Carry O Captu	ge area (ac coefficient f conc. (mi me (min) y @ 10 yr tive C x A x I (cfs) ment (cfs) vover (cfs) ured (cfs)	) c (C) n) (in/hr)	= 0.71 = 0.52 = 24.10 = 12.90 = 5.33 = 3.08 = 16.43 = 2.49 = 0.00 = 2.49		Slope of inv Slope energy Critical dept Natural grou Upstream su Additional ( Full-flow ca Gutter slope Cross slope	ert (%) y grade li h (in) und elev. urcharge ( 2 (cfs) pacity (cf (ft/ft) (ft/ft)	ne (%) (ft) (ft) (s)		3.289 3.289 16 201.31 0.00 0.00 74.38 0.00 0.04
Q Bypa	ssed to 50	) (cfs)	= 0.00		Width of Flo	ow (ft)		=	4.73
Q Bypa Line 52 S-39 TO S	ssed to $50^{\circ}$ Q = 14. S-40 / Down	0 (cfs) .70 S Istream line	= 0.00 Size = 30 x 30 ( = 51	(Cir)	Width of Flo	0w (ft)  Len =	156.0	= J	4.73  LC = 0.50
Q Bypa Line 52 3-39 TO 5	Q = 14. S-40 / Down Invert	o (cfs) 70 S Istream line Depth	= 0.00 Size = 30 x 30 ( = 51 HGL	(Cir) EGL	Width of Flo Nv = 0.013 Arca	0w (ft)  Len =  Vel	 156.0 	=  /id	4.73  LC = 0.50  Cover
Q Bypa Line 52 S-39 TO S Dnstrm Upstrm	Q = 14. Q = 14. S-40 / Down Invert 194.50 197.00	0 (cfs) 70 S Istream line Depth 16 15	= 0.00 Size = 30 x 30 ( = 51 HGL 195.87 198.28	(Cir) EGL 196.31 198.80	Width of Flo Nv = 0.013 Area 2.76 2.53	vel 5.33 5.81	156.0 T-W 1.85 2.50	J 	4.73  LC = 0.50 Cover 4.31 4.50
Q Bypa Line 52 S-39 TO S Dostrm Upstrm Drainag Runoff c Time of Inlet Tin Intensity Cumulat Q = CA	Q = 14 $Q = 14$ S-40 / Down Invert 194.50 197.00 e area (ac) coefficient conc. (min ne (min) 7 @ 10 yr ( ive C x A x I (cfs)	) (cfs) .70 S .stream line Depth 16 15 (C) 1) (in/hr)	= 0.00 Size = 30 x 30 ( $= 51$ HGL 195.87 198.28 $= 0.28$ $= 0.28$ $= 0.50$ $= 23.23$ $= 10.00$ $= 5.41$ $= 2.72$ $= 14.70$	(Cir) EGL 196.31 198.80	Width of Flo Nv = 0.013 Area 2.76 2.53 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 5.33 5.81 ert (%) grade lir n (in) nd elev. ( rcharge (i (cfs) pacity (cfs)	156.0 T-W 1.85 2.50 ne (%) ft) ft) ft)	 /id 	4.73 LC = 0.50 Cover 4.31 4.50 1.603 1.597 15 204.00 0.00 51.92

		4.17	$Size = 30 \times 3$	0 (Cir)	Nv = 0.013	Len =	= 147.0	JLC = 0.50
S-40 TO	S-41 / Dow	mstream lit	ne = 52					
	Invert	Depth	HGL	EGL	Area	Vel	T-W	id Cover
Dnstrm Upstrm	197.26 198.00	15 15	198.54 199.26	199.03 199.77	2.54 2.47	5.58 5.73	1.79 2.50	4.24 6.09
Drainag Runoff of Time of Inlet Tim Intensity Cumulat Q = CA	te area (ac coefficient conc. (mi ne (min) v @ 10 yr tive C x A x I (cfs)	e) t (C) n) (in/hr)	= 0.43 = 0.54 = 22.42 = 10.00 = 5.50 = 2.58 = 14.17	5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slope of inv Slope energ Critical dep Natural grou Jpstream su Additional ( Full-flow ca	vert (%) y grade li th (in) und elev. urcharge ( Q (cfs) pacity (cf	ne (%) (ft) (ft) S)	= 0.503 = 0.503 = 15 = 206.59 = 0.00 = 0.00 = 29.10
Q Catchi Q Carryo Q Captu Q Bypas	ment (cfs) over (cfs) red (cfs) sed to 46	) (cfs)	$= 1.68 \\= 0.00 \\= 1.68 \\= 0.00$	C C V	Gutter slope Cross slope Vidth of Flo	(ft/ft) (ft/ft) ww (ft)		= 0.00 = 0.04 = 3.63
				ی بند زند زند زند که بنه تل جد بند که که بند <b>ت</b>	ی بن بید بن جد بن به بن <u>ما کا کا م</u> رد کا ب		يو ها و به به يا تا تا به به تا تا ت	
Line 54	Q = 13.2	10 S	$ize = 14 \times 23$	(Ell) N	v = 0.013	Len = 1	150.0	JLC = 0.50
Line 54  5-41 TO S-	Q = 13. 42 / Downs Invert	10 S stream line Depth	ize = 14 x 23 = 53 HGL	(EII) N EGL	v = 0.013 Area	Len = 1 Vel	150.0 T-Wid	JLC = 0.50
Line 54 -41 TO S- )nstrm Ipstrm	Q = 13. 42 / Downs Invert 199.25 200.00	10 S stream line Depth 13 0	ize = 14 x 23 = 53 HGL 200.30 201.05	(EII) N EGL 201.27 202.02	v = 0.013 Area 1.66 1.66	Len = 1 Vel 7.88 7.88	150.0 T-Wid 0.00 0.00	JLC = 0.50 Cover 6.17 7.63
Line 54 G-41 TO S- Distrm Jpstrm Drainage Runoff co Time of co nlet Time ntensity ( Cumulativ 2 = CA x	$Q = 13.2$ $42 / Downs$ Invert $199.25$ $200.00$ area (ac) efficient (fonc. (min)) $(min)$ $2 10 \text{ yr (iz)}$ $e C \ge A$ $I (cfs)$	$\begin{array}{c} 10 \qquad \text{S} \\ \hline \text{stream line} \\ \hline \text{Depth} \\ 13 \\ 0 \\ \hline \text{C} \\ \end{array} = \\ \hline \text{n/hr} \\ = \\ = \\ \end{array}$	ize = 14 x 23 = 53 HGL 200.30 201.05 = 0.38 = 0.46 = 21.58 = 10.00 = 5.59 = 2.34 = 13.10	(EII) N EGL 201.27 202.02 Slo Cr Na Up Ad Ful	v = 0.013 Area 1.66 1.66 0pe of invertope energy itical depth atural ground ostream sure ditional Q of ll-flow capa	Len = 1 Vel 7.88 7.88 7.88 rt (%) grade line (in) ud elev. (f charge (ft (cfs) acity (cfs)	150.0 T-Wid 0.00 0.00 e (%) t)	JLC = 0.50 $Cover$ $6.17$ $7.63$ $= 0.500$ $= 0.500$ $= 14$ $= 208.80$ $= 0.00$ $= 0.00$ $= 8.31$

Line 55	Q = 4.0	01	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	60.0	JL	C = 0.5
S-42 TO	S-43 / Down	nstream lir	ne = 54						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id	Cover
Dnstrm Upstrm	205.00 207.00	6 6	205.48 207.48	206.54 208.54	0.49 0.49	8.27 8.27	1.40 1.40	2 2	2.30 2.50
Drainag Runoff Time of Inlet Tin Intensity Cumula Q = CA	e area (ac coefficient conc. (min ne (min) y @ 10 yr tive C x A x I (cfs)	) : (C) n) (in/hr)	= 1.26 = 0.44 = 10.00 = 10.00 = 7.24 = 0.55 = 4.01		Slope of inv Slope energy Critical depu Natural grou Upstream su Additional ( Full-flow ca	ert (%) y grade lin th (in) und elev. urcharge ( 2 (cfs) pacity (cf	ne (%) (ft) (ft) (s)	$ \begin{array}{rcrr} = & 3 \\ = & 3 \\ = & 9 \\ = & 2 \\ = & 0 \\ = & 0 \\ = & 1 \\ \end{array} $	0.333 0.333 0.11.00 0.00 0.00 9.17
Q Catch Q Carry Q Captu Q Bypa:	ament (cfs) over (cfs) ared (cfs) ssed to 54	)   (cfs)	$= 4.01 \\ = 0.00 \\ = 4.01 \\ = 0.00$		Gutter slope Cross slope Width of Flo	: (ft/ft) (ft/ft) ow (ft)		= 0 = 0 = 4	.00 .04 .88
Line 56	Q = 9.2	21	Size = 18 x 18	(Cir)	Nv = 0.013	Len =	190.0	JLO	C = 0.50
S-42 TO S	S-44 / Down Invert	istream lin Depth	e = 54 HGL	EGL	Area	Vel	T-W	id	Cover
Dnstrm Upstrm	200.01 200.58	18 18	201.53 203.00	201.95 203.42	1.77 1.77	5.21 5.21	0.00 0.00	7. 1.	.29 .92
Drainage Runoff c Fime of nlet Tin ntensity Cumulat	e area (ac) coefficient conc. (min ne (min) y @ 10 yr ( ive C x A x I (cfs)	) (C) 1) (in/hr)	= 3.00 = 0.30 = 20.53 = 20.00 = 5.71 = 1.61 = 9.21		Slope of invo Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	ert (%) y grade lir h (in) and elev. ( rcharge ( 2 (cfs) pacity (cfs)	ne (%) [ft] ft] 5)	$ \begin{array}{rcl} = & 0 \\ = & 0 \\ = & 1 \\ = & 2 \\ = & 0 \\ = & 0 \\ = & 5 \\ \end{array} $	.300 .770 4 04.00 .92 .00 .75
Q CA					-				

. .

. . . . . . . . . . . . .

-----

	Q = 2.2	27	$Size = 14 \times 23$	(Ell)	Nv = 0.013	Len =	32.0	٩	JLC = 0.50
S-44 TO 2	8-45 / Dowr	nstream line	e = 56						
	Invert	Depth	HGL	EGL	Area	Vel	T-W	'id	Cover
Dnstrm Upstrm	200.68 200.83	14 14	203.21 203.22	203.23 203.25	1.76 1.76	1.29 1.29	0.00 0.00		2.15 2.00
Drainag Runoff of Time of Inlet Tin Intensity Cumula Q = CA	e area (ac) coefficient conc. (min ne (min) y @ 10 yr tive C x A x I (cfs)	) (C) n) (in/hr)	= 0.73 = 0.54 = 20.00 = 20.00 = 5.77 = 0.39 = 2.27		Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	ert (%) y grade lin h (in) und elev. urcharge ( 2 (cfs) pacity (cf	ne (%) (ft) ft) S)		0.469 0.050 7 204.00 1.23 0.00 8.05
Q Catch Q Carry Q Captu Q Bypas	ment (cfs) over (cfs) ured (cfs) ssed to 0	) (cfs)	$= 2.27 \\= 0.00 \\= 2.27 \\= 0.00$		Gutter slope Cross slope Width of Flo	(ft/ft) (ft/ft) ow (ft)		= = =	0.00 0.04 3.33
		<i></i>	n = _ = 0, 3 % v = v # = .	ہ ہو ہوا کے بنی کا بنا تھا ہو کر کا ک			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Line 58	Q = 1.8	4 <u>S</u>	lize = 18 x 18	(Cir)	Nv = 0.013	Len =	95.0		LC = 0.50
Line 58 S-44 TO S	Q = 1.8 S-44A / Dow Invert	4 S vnstream lin Depth	lize = 18 x 18 ne = 56 HGL	(Cir)  EGL	Nv = 0.013 Area	Len = Vel	95.0 	J id	LC = 0.50
Line 58 3-44 TO S Dnstrm Upstrm	Q = 1.8 S-44A / Dow Invert 200.68 201.50	24 S vnstream lin Depth 18 18	lize = 18 x 18 ne = 56 HGL 203.21 203.24	(Cir) EGL 203.22 203.25	Nv = 0.013 Area 1.77 1.77	Len = 1 Vel 1.04 1.04	95.0 T-W 0.00 0.00	J	ULC = 0.50 Cover 1.82 1.80
Line 58 S-44 TO S Dnstrm Upstrm Drainage Runoff c Time of Inlet Tim Intensity Cumulat Q = CA :	Q = 1.8 S-44A / Dow Invert 200.68 201.50 e area (ac) coefficient conc. (min he (min) (@ 10 yr ( ive C x A x I (cfs)	vnstream lin Depth 18 18 (C) 1) (in/hr)	$bize = 18 \times 18$ he = 56 HGL 203.21 203.24 = 0.82 = 0.39 = 20.00 = 20.00 = 5.77 = 0.32 = 1.84	(Cir) EGL 203.22 203.25	Nv = 0.013 Area 1.77 1.77 Slope of inve Slope energy Critical dept Natural grou Upstream su Additional Q Full-flow cap	Len = Vel 1.04 1.04 ert (%) grade lin h (in) nd elev. ( rcharge ( cfs) pacity (cfs)	95.0 T-W 0.00 0.00 ne (%) ft) ft) ft)	 id  	Cover 1.82 1.80 0.863 0.031 6 204.80 0.24 0.00 9.76







. . .







b. ...



, ,









• .

. . . . . . . . . .



96

!






•••••







. .





 $l \infty$ 

ţ





16/

:









.

103

------





b. .....





ţ









;









;

·

.

· . .









11]

ł









ł



• • • •







. . .



•-----









, ,

L .---







: